OpenSearch-AI / utilities /re_ranker.py
prasadnu's picture
RAG fix
2e2dda5
raw
history blame
4.13 kB
import boto3
from botocore.exceptions import ClientError
import pprint
import time
import streamlit as st
from sentence_transformers import CrossEncoder
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", max_length=512)
kendra_ranking = boto3.client("kendra-ranking",region_name = 'us-east-1')
print("Create a rescore execution plan.")
# Provide a name for the rescore execution plan
name = "MyRescoreExecutionPlan"
# Set your required additional capacity units
# Don't set capacity units if you don't require more than 1 unit given by default
capacity_units = 2
# try:
# rescore_execution_plan_response = kendra_ranking.create_rescore_execution_plan(
# Name = name,
# CapacityUnits = {"RescoreCapacityUnits":capacity_units}
# )
# pprint.pprint(rescore_execution_plan_response)
# rescore_execution_plan_id = rescore_execution_plan_response["Id"]
# print("Wait for Amazon Kendra to create the rescore execution plan.")
# while True:
# # Get the details of the rescore execution plan, such as the status
# rescore_execution_plan_description = kendra_ranking.describe_rescore_execution_plan(
# Id = rescore_execution_plan_id
# )
# # When status is not CREATING quit.
# status = rescore_execution_plan_description["Status"]
# print(" Creating rescore execution plan. Status: "+status)
# time.sleep(60)
# if status != "CREATING":
# break
# except ClientError as e:
# print("%s" % e)
# print("Program ends.")
def re_rank(self_, rerank_type, search_type, question, answers):
print("start")
print()
ans = []
ids = []
ques_ans = []
query = question[0]['question']
for i in answers[0]['answer']:
if(self_ == "search"):
ans.append({
"Id": i['id'],
"Body": i["desc"],
"OriginalScore": i['score'],
"Title":i["desc"]
})
ids.append(i['id'])
ques_ans.append((query,i["desc"]))
else:
ans.append({'text':i})
ques_ans.append((query,i))
re_ranked = [{}]
if(rerank_type == 'Kendra Rescore'):
rescore_response = kendra_ranking.rescore(
RescoreExecutionPlanId = 'b2a4d4f3-98ff-4e17-8b69-4c61ed7d91eb',
SearchQuery = query,
Documents = ans
)
#[{'DocumentId': 'DocId1', 'Score': 2.0}, {'DocumentId': 'DocId2', 'Score': 1.0}]
re_ranked[0]['answer']=[]
for result in rescore_response["ResultItems"]:
pos_ = ids.index(result['DocumentId'])
re_ranked[0]['answer'].append(answers[0]['answer'][pos_])
re_ranked[0]['search_type']=search_type,
re_ranked[0]['id'] = len(question)
#st.session_state.answers_none_rank = st.session_state.answers
return re_ranked
# if(rerank_type == 'None'):
# st.session_state.answers = st.session_state.answers_none_rank
if(rerank_type == 'Cross Encoder'):
scores = model.predict(
ques_ans
)
print("scores")
print(scores)
index__ = 0
for i in ans:
i['new_score'] = scores[index__]
index__ = index__+1
ans_sorted = sorted(ans, key=lambda d: d['new_score'],reverse=True)
def retreive_only_text(item):
return item['text']
if(self_ == 'rag'):
return list(map(retreive_only_text, ans_sorted))
re_ranked[0]['answer']=[]
for j in ans_sorted:
pos_ = ids.index(j['Id'])
re_ranked[0]['answer'].append(answers[0]['answer'][pos_])
re_ranked[0]['search_type']= search_type,
re_ranked[0]['id'] = len(question)
return re_ranked
#return st.session_state.answers