Spaces:
Running
on
T4
Running
on
T4
import streamlit as st | |
import uuid | |
import os | |
import re | |
import sys | |
import uuid | |
from io import BytesIO | |
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search") | |
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG") | |
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities") | |
import boto3 | |
import requests | |
from boto3 import Session | |
import botocore.session | |
import json | |
import random | |
import string | |
# import rag_DocumentLoader | |
# import rag_DocumentSearcher | |
import pandas as pd | |
from PIL import Image | |
import shutil | |
import base64 | |
import time | |
import botocore | |
#from langchain.callbacks.base import BaseCallbackHandler | |
#import streamlit_nested_layout | |
#from IPython.display import clear_output, display, display_markdown, Markdown | |
from requests_aws4auth import AWS4Auth | |
#import copali | |
from requests.auth import HTTPBasicAuth | |
import bedrock_agent | |
import warnings | |
warnings.filterwarnings("ignore", category=DeprecationWarning) | |
st.set_page_config( | |
#page_title="Semantic Search using OpenSearch", | |
layout="wide", | |
page_icon="images/opensearch_mark_default.png" | |
) | |
parent_dirname = '/home/ubuntu/AI-search-with-amazon-opensearch-service/OpenSearchApp' | |
USER_ICON = "images/user.png" | |
AI_ICON = "images/opensearch-twitter-card.png" | |
REGENERATE_ICON = "images/regenerate.png" | |
s3_bucket_ = "pdf-repo-uploads" | |
#"pdf-repo-uploads" | |
polly_client = boto3.Session( | |
region_name='us-east-1').client('polly') | |
# Check if the user ID is already stored in the session state | |
if 'user_id' in st.session_state: | |
user_id = st.session_state['user_id'] | |
#print(f"User ID: {user_id}") | |
# If the user ID is not yet stored in the session state, generate a random UUID | |
else: | |
user_id = str(uuid.uuid4()) | |
st.session_state['user_id'] = user_id | |
if 'session_id_' not in st.session_state: | |
st.session_state['session_id_'] = str(uuid.uuid1()) | |
if "chats" not in st.session_state: | |
st.session_state.chats = [ | |
{ | |
'id': 0, | |
'question': '', | |
'answer': '' | |
} | |
] | |
if "questions__" not in st.session_state: | |
st.session_state.questions__ = [] | |
if "answers__" not in st.session_state: | |
st.session_state.answers__ = [] | |
if "input_index" not in st.session_state: | |
st.session_state.input_index = "hpijan2024hometrack"#"globalwarmingnew"#"hpijan2024hometrack_no_img_no_table" | |
if "input_is_rerank" not in st.session_state: | |
st.session_state.input_is_rerank = True | |
if "input_copali_rerank" not in st.session_state: | |
st.session_state.input_copali_rerank = False | |
if "input_table_with_sql" not in st.session_state: | |
st.session_state.input_table_with_sql = False | |
if "inputs_" not in st.session_state: | |
st.session_state.inputs_ = {} | |
if "input_shopping_query" not in st.session_state: | |
st.session_state.input_shopping_query="get me shoes suitable for trekking"#"What is the projected energy percentage from renewable sources in future?"#"Which city in United Kingdom has the highest average housing price ?"#"How many aged above 85 years died due to covid ?"# What is the projected energy from renewable sources ?" | |
if "input_rag_searchType" not in st.session_state: | |
st.session_state.input_rag_searchType = ["Sparse Search"] | |
region = 'us-east-1' | |
#bedrock_runtime_client = boto3.client('bedrock-runtime',region_name=region) | |
output = [] | |
service = 'es' | |
st.markdown(""" | |
<style> | |
[data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{ | |
gap: 0rem; | |
} | |
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{ | |
gap: 0rem; | |
} | |
</style> | |
""",unsafe_allow_html=True) | |
################ OpenSearch Py client ##################### | |
# credentials = boto3.Session().get_credentials() | |
# awsauth = AWSV4SignerAuth(credentials, region, service) | |
# ospy_client = OpenSearch( | |
# hosts = [{'host': 'search-opensearchservi-75ucark0bqob-bzk6r6h2t33dlnpgx2pdeg22gi.us-east-1.es.amazonaws.com', 'port': 443}], | |
# http_auth = awsauth, | |
# use_ssl = True, | |
# verify_certs = True, | |
# connection_class = RequestsHttpConnection, | |
# pool_maxsize = 20 | |
# ) | |
################# using boto3 credentials ################### | |
# credentials = boto3.Session().get_credentials() | |
# awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service, session_token=credentials.token) | |
# service = 'es' | |
################# using boto3 credentials #################### | |
# if "input_searchType" not in st.session_state: | |
# st.session_state.input_searchType = "Conversational Search (RAG)" | |
# if "input_temperature" not in st.session_state: | |
# st.session_state.input_temperature = "0.001" | |
# if "input_topK" not in st.session_state: | |
# st.session_state.input_topK = 200 | |
# if "input_topP" not in st.session_state: | |
# st.session_state.input_topP = 0.95 | |
# if "input_maxTokens" not in st.session_state: | |
# st.session_state.input_maxTokens = 1024 | |
def write_logo(): | |
col1, col2, col3 = st.columns([5, 1, 5]) | |
with col2: | |
st.image(AI_ICON, use_container_width='always') | |
def write_top_bar(): | |
col1, col2 = st.columns([77,23]) | |
with col1: | |
st.page_link("app.py", label=":orange[Home]", icon="🏠") | |
st.header("AI Shopping assistant",divider='rainbow') | |
#st.image(AI_ICON, use_container_width='always') | |
with col2: | |
st.write("") | |
st.write("") | |
clear = st.button("Clear") | |
st.write("") | |
st.write("") | |
return clear | |
clear = write_top_bar() | |
if clear: | |
st.session_state.questions__ = [] | |
st.session_state.answers__ = [] | |
st.session_state.input_shopping_query="" | |
st.session_state.session_id_ = str(uuid.uuid1()) | |
bedrock_agent.delete_memory() | |
# st.session_state.input_searchType="Conversational Search (RAG)" | |
# st.session_state.input_temperature = "0.001" | |
# st.session_state.input_topK = 200 | |
# st.session_state.input_topP = 0.95 | |
# st.session_state.input_maxTokens = 1024 | |
def handle_input(): | |
print("Question: "+st.session_state.input_shopping_query) | |
print("-----------") | |
print("\n\n") | |
if(st.session_state.input_shopping_query==''): | |
return "" | |
inputs = {} | |
for key in st.session_state: | |
if key.startswith('input_'): | |
inputs[key.removeprefix('input_')] = st.session_state[key] | |
st.session_state.inputs_ = inputs | |
####### | |
#st.write(inputs) | |
question_with_id = { | |
'question': inputs["shopping_query"], | |
'id': len(st.session_state.questions__) | |
} | |
st.session_state.questions__.append(question_with_id) | |
print(inputs) | |
out_ = bedrock_agent.query_(inputs) | |
st.session_state.answers__.append({ | |
'answer': out_['text'], | |
'source':out_['source'], | |
'last_tool':out_['last_tool'], | |
'id': len(st.session_state.questions__) | |
}) | |
st.session_state.input_shopping_query="" | |
# search_type = st.selectbox('Select the Search type', | |
# ('Conversational Search (RAG)', | |
# 'OpenSearch vector search', | |
# 'LLM Text Generation' | |
# ), | |
# key = 'input_searchType', | |
# help = "Select the type of retriever\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers_)" | |
# ) | |
# col1, col2, col3, col4 = st.columns(4) | |
# with col1: | |
# st.text_input('Temperature', value = "0.001", placeholder='LLM Temperature', key = 'input_temperature',help = "Set the temperature of the Large Language model. \n Note: 1. Set this to values lower to 1 in the order of 0.001, 0.0001, such low values reduces hallucination and creativity in the LLM response; 2. This applies only when LLM is a part of the retriever pipeline") | |
# with col2: | |
# st.number_input('Top K', value = 200, placeholder='Top K', key = 'input_topK', step = 50, help = "This limits the LLM's predictions to the top k most probable tokens at each step of generation, this applies only when LLM is a prt of the retriever pipeline") | |
# with col3: | |
# st.number_input('Top P', value = 0.95, placeholder='Top P', key = 'input_topP', step = 0.05, help = "This sets a threshold probability and selects the top tokens whose cumulative probability exceeds the threshold while the tokens are generated by the LLM") | |
# with col4: | |
# st.number_input('Max Output Tokens', value = 500, placeholder='Max Output Tokens', key = 'input_maxTokens', step = 100, help = "This decides the total number of tokens generated as the final response. Note: Values greater than 1000 takes longer response time") | |
# st.markdown('---') | |
def write_user_message(md): | |
col1, col2 = st.columns([3,97]) | |
with col1: | |
st.image(USER_ICON, use_container_width='always') | |
with col2: | |
#st.warning(md['question']) | |
st.markdown("<div style='color:#e28743';font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;font-style: italic;'>"+md['question']+"</div>", unsafe_allow_html = True) | |
def render_answer(question,answer,index): | |
col1, col2, col_3 = st.columns([4,74,22]) | |
with col1: | |
st.image(AI_ICON, use_container_width='always') | |
with col2: | |
use_interim_results = False | |
src_dict = {} | |
ans_ = answer['answer'] | |
span_ans = ans_.replace('<question>',"<span style='fontSize:18px;color:#f37709;fontStyle:italic;'>").replace("</question>","</span>") | |
st.markdown("<p>"+span_ans+"</p>",unsafe_allow_html = True) | |
print("answer['source']") | |
print("-------------") | |
print(answer['source']) | |
print("-------------") | |
print(answer['last_tool']) | |
if(answer['last_tool']['name'] in ["generate_images","get_relevant_items_for_image","get_relevant_items_for_text","retrieve_with_hybrid_search","retrieve_with_keyword_search","get_any_general_recommendation"]): | |
use_interim_results = True | |
src_dict =json.loads(answer['last_tool']['response'].replace("'",'"')) | |
print("src_dict") | |
print("-------------") | |
print(src_dict) | |
#if("get_relevant_items_for_text" in src_dict): | |
if(use_interim_results and answer['last_tool']['name']!= 'generate_images' and answer['last_tool']['name']!= 'get_any_general_recommendation'): | |
key_ = answer['last_tool']['name'] | |
st.write("<br><br>",unsafe_allow_html = True) | |
img_col1, img_col2, img_col3 = st.columns([30,30,40]) | |
for index,item in enumerate(src_dict[key_]): | |
response_ = requests.get(item['image']) | |
img = Image.open(BytesIO(response_.content)) | |
resizedImg = img.resize((230, 180), Image.Resampling.LANCZOS) | |
if(index ==0): | |
with img_col1: | |
st.image(resizedImg,use_container_width = True,caption = item['title']) | |
if(index ==1): | |
with img_col2: | |
st.image(resizedImg,use_container_width = True,caption = item['title']) | |
#st.image(parent_dirname+"/retrieved_esci_images/"+item['id']+"_resized.jpg",caption = item['title'],use_container_width = True) | |
if(answer['last_tool']['name'] == "generate_images" or answer['last_tool']['name'] == "get_any_general_recommendation"): | |
st.write("<br>",unsafe_allow_html = True) | |
gen_img_col1, gen_img_col2,gen_img_col2 = st.columns([30,30,30]) | |
res = src_dict['generate_images'].replace('s3://','') | |
s3_ = boto3.resource('s3', | |
aws_access_key_id=st.secrets['user_access_key'], | |
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') | |
key = res.split('/')[1] | |
s3_stream = s3_.Object("bedrock-video-generation-us-east-1-lbxkrh", key).get()['Body'].read() | |
img_ = Image.open(BytesIO(s3_stream)) | |
resizedImg = img_.resize((230, 180), Image.Resampling.LANCZOS) | |
with gen_img_col1: | |
st.image(resizedImg,caption = "Generated image for "+key.split(".")[0],use_container_width = True) | |
st.write("<br>",unsafe_allow_html = True) | |
# def stream_(): | |
# #use for streaming response on the client side | |
# for word in ans_.split(" "): | |
# yield word + " " | |
# time.sleep(0.04) | |
# #use for streaming response from Llm directly | |
# if(isinstance(ans_,botocore.eventstream.EventStream)): | |
# for event in ans_: | |
# chunk = event.get('chunk') | |
# if chunk: | |
# chunk_obj = json.loads(chunk.get('bytes').decode()) | |
# if('content_block' in chunk_obj or ('delta' in chunk_obj and 'text' in chunk_obj['delta'])): | |
# key_ = list(chunk_obj.keys())[2] | |
# text = chunk_obj[key_]['text'] | |
# clear_output(wait=True) | |
# output.append(text) | |
# yield text | |
# time.sleep(0.04) | |
# if(index == len(st.session_state.questions_)): | |
# st.write_stream(stream_) | |
# if(isinstance(st.session_state.answers_[index-1]['answer'],botocore.eventstream.EventStream)): | |
# st.session_state.answers_[index-1]['answer'] = "".join(output) | |
# else: | |
# st.write(ans_) | |
# polly_response = polly_client.synthesize_speech(VoiceId='Joanna', | |
# OutputFormat='ogg_vorbis', | |
# Text = ans_, | |
# Engine = 'neural') | |
# audio_col1, audio_col2 = st.columns([50,50]) | |
# with audio_col1: | |
# st.audio(polly_response['AudioStream'].read(), format="audio/ogg") | |
#st.markdown("<div style='font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;border-radius: 10px;'>"+ans_+"</div>", unsafe_allow_html = True) | |
#st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Relevant images from the document :</b></div>", unsafe_allow_html = True) | |
#st.write("") | |
colu1,colu2,colu3 = st.columns([4,82,20]) | |
if(answer['source']!={}): | |
with colu2: | |
with st.expander("Agent Traces:"): | |
st.write(answer['source']) | |
# with st.container(): | |
# if(len(res_img)>0): | |
# with st.expander("Images:"): | |
# col3,col4,col5 = st.columns([33,33,33]) | |
# cols = [col3,col4] | |
# idx = 0 | |
# #print(res_img) | |
# for img_ in res_img: | |
# if(img_['file'].lower()!='none' and idx < 2): | |
# img = img_['file'].split(".")[0] | |
# caption = img_['caption'] | |
# with cols[idx]: | |
# st.image(parent_dirname+"/figures/"+st.session_state.input_index+"/"+img+".jpg") | |
# #st.write(caption) | |
# idx = idx+1 | |
# #st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Sources from the document:</b></div>", unsafe_allow_html = True) | |
# if(len(answer["table"] )>0): | |
# with st.expander("Table:"): | |
# df = pd.read_csv(answer["table"][0]['name'],skipinitialspace = True, on_bad_lines='skip',delimiter='`') | |
# df.fillna(method='pad', inplace=True) | |
# st.table(df) | |
# with st.expander("Raw sources:"): | |
# st.write(answer["source"]) | |
# with col_3: | |
# #st.markdown("<div style='color:#e28743;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 5px;'><b>"+",".join(st.session_state.input_rag_searchType)+"</b></div>", unsafe_allow_html = True) | |
# if(index == len(st.session_state.questions_)): | |
# rdn_key = ''.join([random.choice(string.ascii_letters) | |
# for _ in range(10)]) | |
# currentValue = ''.join(st.session_state.input_rag_searchType)+str(st.session_state.input_is_rerank)+str(st.session_state.input_table_with_sql)+st.session_state.input_index | |
# oldValue = ''.join(st.session_state.inputs_["rag_searchType"])+str(st.session_state.inputs_["is_rerank"])+str(st.session_state.inputs_["table_with_sql"])+str(st.session_state.inputs_["index"]) | |
# #print("changing values-----------------") | |
# def on_button_click(): | |
# # print("button clicked---------------") | |
# # print(currentValue) | |
# # print(oldValue) | |
# if(currentValue!=oldValue or 1==1): | |
# #print("----------regenerate----------------") | |
# st.session_state.input_query = st.session_state.questions_[-1]["question"] | |
# st.session_state.answers_.pop() | |
# st.session_state.questions_.pop() | |
# handle_input() | |
# with placeholder.container(): | |
# render_all() | |
# if("currentValue" in st.session_state): | |
# del st.session_state["currentValue"] | |
# try: | |
# del regenerate | |
# except: | |
# pass | |
# #print("------------------------") | |
# #print(st.session_state) | |
# placeholder__ = st.empty() | |
# placeholder__.button("🔄",key=rdn_key,on_click=on_button_click) | |
#Each answer will have context of the question asked in order to associate the provided feedback with the respective question | |
def write_chat_message(md, q,index): | |
#res_img = md['image'] | |
#st.session_state['session_id'] = res['session_id'] to be added in memory | |
chat = st.container() | |
with chat: | |
#print("st.session_state.input_index------------------") | |
#print(st.session_state.input_index) | |
render_answer(q,md,index) | |
def render_all(): | |
index = 0 | |
for (q, a) in zip(st.session_state.questions__, st.session_state.answers__): | |
index = index +1 | |
write_user_message(q) | |
write_chat_message(a, q,index) | |
placeholder = st.empty() | |
with placeholder.container(): | |
render_all() | |
st.markdown("") | |
col_2, col_3 = st.columns([75,20]) | |
#col_1, col_2, col_3 = st.columns([7.5,71.5,22]) | |
# with col_1: | |
# st.markdown("<p style='padding:0px 0px 0px 0px; color:#FF9900;font-size:120%'><b>Ask:</b></p>",unsafe_allow_html=True, help = 'Enter the questions and click on "GO"') | |
with col_2: | |
#st.markdown("") | |
input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_shopping_query") | |
with col_3: | |
#hidden = st.button("RUN",disabled=True,key = "hidden") | |
# audio_value = st.audio_input("Record a voice message") | |
# print(audio_value) | |
play = st.button("GO",on_click=handle_input,key = "play") | |
#with st.sidebar: | |
# st.page_link("/home/ubuntu/AI-search-with-amazon-opensearch-service/OpenSearchApp/app.py", label=":orange[Home]", icon="🏠") | |
# st.subheader(":blue[Sample Data]") | |
# coln_1,coln_2 = st.columns([70,30]) | |
# # index_select = st.radio("Choose one index",["UK Housing","Covid19 impacts on Ireland","Environmental Global Warming","BEIR Research"], | |
# # captions = ['[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)', | |
# # '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)', | |
# # '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)', | |
# # '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/BEIR.pdf)'], | |
# # key="input_rad_index") | |
# with coln_1: | |
# index_select = st.radio("Choose one index",["UK Housing","Global Warming stats","Covid19 impacts on Ireland"],key="input_rad_index") | |
# with coln_2: | |
# st.markdown("<p style='font-size:15px'>Preview file</p>",unsafe_allow_html=True) | |
# st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)") | |
# st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)") | |
# st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)") | |
# #st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/BEIR.pdf)") | |
# st.markdown(""" | |
# <style> | |
# [data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{ | |
# gap: 0rem; | |
# } | |
# [data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{ | |
# gap: 0rem; | |
# } | |
# </style> | |
# """,unsafe_allow_html=True) | |
# # Initialize boto3 to use the S3 client. | |
# s3_client = boto3.resource('s3') | |
# bucket=s3_client.Bucket(s3_bucket_) | |
# objects = bucket.objects.filter(Prefix="sample_pdfs/") | |
# urls = [] | |
# client = boto3.client('s3') | |
# for obj in objects: | |
# if obj.key.endswith('.pdf'): | |
# # Generate the S3 presigned URL | |
# s3_presigned_url = client.generate_presigned_url( | |
# ClientMethod='get_object', | |
# Params={ | |
# 'Bucket': s3_bucket_, | |
# 'Key': obj.key | |
# }, | |
# ExpiresIn=3600 | |
# ) | |
# # Print the created S3 presigned URL | |
# print(s3_presigned_url) | |
# urls.append(s3_presigned_url) | |
# #st.write("["+obj.key.split('/')[1]+"]("+s3_presigned_url+")") | |
# st.link_button(obj.key.split('/')[1], s3_presigned_url) | |
# st.subheader(":blue[Your multi-modal documents]") | |
# pdf_doc_ = st.file_uploader( | |
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=False) | |
# pdf_docs = [pdf_doc_] | |
# if st.button("Process"): | |
# with st.spinner("Processing"): | |
# if os.path.isdir(parent_dirname+"/pdfs") == False: | |
# os.mkdir(parent_dirname+"/pdfs") | |
# for pdf_doc in pdf_docs: | |
# print(type(pdf_doc)) | |
# pdf_doc_name = (pdf_doc.name).replace(" ","_") | |
# with open(os.path.join(parent_dirname+"/pdfs",pdf_doc_name),"wb") as f: | |
# f.write(pdf_doc.getbuffer()) | |
# request_ = { "bucket": s3_bucket_,"key": pdf_doc_name} | |
# # if(st.session_state.input_copali_rerank): | |
# # copali.process_doc(request_) | |
# # else: | |
# rag_DocumentLoader.load_docs(request_) | |
# print('lambda done') | |
# st.success('you can start searching on your PDF') | |
# ############## haystach demo temporary addition ############ | |
# # st.subheader(":blue[Multimodality]") | |
# # colu1,colu2 = st.columns([50,50]) | |
# # with colu1: | |
# # in_images = st.toggle('Images', key = 'in_images', disabled = False) | |
# # with colu2: | |
# # in_tables = st.toggle('Tables', key = 'in_tables', disabled = False) | |
# # if(in_tables): | |
# # st.session_state.input_table_with_sql = True | |
# # else: | |
# # st.session_state.input_table_with_sql = False | |
# ############## haystach demo temporary addition ############ | |
# if(pdf_doc_ is None or pdf_doc_ == ""): | |
# if(index_select == "Global Warming stats"): | |
# st.session_state.input_index = "globalwarmingnew" | |
# if(index_select == "Covid19 impacts on Ireland"): | |
# st.session_state.input_index = "covid19ie"#"choosetheknnalgorithmforyourbillionscaleusecasewithopensearchawsbigdatablog" | |
# if(index_select == "BEIR"): | |
# st.session_state.input_index = "2104" | |
# if(index_select == "UK Housing"): | |
# st.session_state.input_index = "hpijan2024hometrack" | |
# # if(in_images == True and in_tables == True): | |
# # st.session_state.input_index = "hpijan2024hometrack" | |
# # else: | |
# # if(in_images == True and in_tables == False): | |
# # st.session_state.input_index = "hpijan2024hometrackno_table" | |
# # else: | |
# # if(in_images == False and in_tables == True): | |
# # st.session_state.input_index = "hpijan2024hometrackno_images" | |
# # else: | |
# # st.session_state.input_index = "hpijan2024hometrack_no_img_no_table" | |
# # if(in_images): | |
# # st.session_state.input_include_images = True | |
# # else: | |
# # st.session_state.input_include_images = False | |
# # if(in_tables): | |
# # st.session_state.input_include_tables = True | |
# # else: | |
# # st.session_state.input_include_tables = False | |
# custom_index = st.text_input("If uploaded the file already, enter the original file name", value = "") | |
# if(custom_index!=""): | |
# st.session_state.input_index = re.sub('[^A-Za-z0-9]+', '', (custom_index.lower().replace(".pdf","").split("/")[-1].split(".")[0]).lower()) | |
# st.subheader(":blue[Retriever]") | |
# search_type = st.multiselect('Select the Retriever(s)', | |
# ['Keyword Search', | |
# 'Vector Search', | |
# 'Sparse Search', | |
# ], | |
# ['Sparse Search'], | |
# key = 'input_rag_searchType', | |
# help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)" | |
# ) | |
# re_rank = st.checkbox('Re-rank results', key = 'input_re_rank', disabled = False, value = True, help = "Checking this box will re-rank the results using a cross-encoder model") | |
# if(re_rank): | |
# st.session_state.input_is_rerank = True | |
# else: | |
# st.session_state.input_is_rerank = False | |
# # copali_rerank = st.checkbox("Search and Re-rank with Token level vectors",key = 'copali_rerank',help = "Enabling this option uses 'Copali' model's page level image embeddings to retrieve documents and MaxSim to re-rank the pages.\n\n Hugging Face Model: https://huggingface.co/vidore/colpali") | |
# # if(copali_rerank): | |
# # st.session_state.input_copali_rerank = True | |
# # else: | |
# # st.session_state.input_copali_rerank = False | |