OpenSearch-AI / app.py
prasadnu's picture
app look
e280474
raw
history blame
2.86 kB
import streamlit as st
from PIL import Image
import base64
import yaml
import os
import urllib.request
import tarfile
import subprocess
from yaml.loader import SafeLoader
st.set_page_config(
layout="wide",
page_icon="/home/ubuntu/images/opensearch_mark_default.png"
)
st.markdown("""<style>
@import url('https://fonts.cdnfonts.com/css/amazon-ember');
</style>
""",unsafe_allow_html=True)
AI_ICON = "images/opensearch-twitter-card.png"
col_0_1,col_0_2,col_0_3= st.columns([10,50,85])
with col_0_1:
st.image(AI_ICON, use_column_width='always')
with col_0_2:
st.markdown('<p style="fontSize:40px;color:#FF9900;fontFamily:\'Amazon Ember Display 500\', sans-serif;">OpenSearch AI demos</p>',unsafe_allow_html=True)
#st.header(":rewind: Demos available")
st.write("")
st.write("")
col_1_1,col_1_2,col_1_3 = st.columns([3,40,65])
with col_1_1:
st.subheader(" ")
with col_1_2:
st.markdown('<p style="fontSize:28px;color:#c5c3c0;fontFamily:\'Amazon Ember Cd RC 250\', sans-serif;">Neural Search</p>',unsafe_allow_html=True)
with col_1_3:
demo_1 = st.button("Launch",key = "demo_1")
if(demo_1):
st.switch_page('pages/Semantic_Search.py')
st.write("")
col_2_1,col_2_2,col_2_3 = st.columns([3,40,65])
with col_2_1:
st.subheader(" ")
with col_2_2:
st.markdown('<p style="fontSize:28px;color:#c5c3c0;fontFamily:\'Amazon Ember Cd RC 250\', sans-serif;">Multimodal Conversational Search</p>',unsafe_allow_html=True)
with col_2_3:
demo_2 = st.button("Launch",key = "demo_2")
if(demo_2):
st.switch_page('pages/Multimodal_Conversational_Search.py')
st.write("")
col_3_1,col_3_2,col_3_3 = st.columns([3,40,65])
with col_3_1:
st.subheader(" ")
with col_3_2:
st.markdown('<div style="fontSize:28px;color:#c5c3c0;fontFamily:\'Amazon Ember Cd RC 250\', sans-serif;">Agentic Shopping Assistant</div>',unsafe_allow_html=True)#<span style="fontSize:14px;color:#099ef3;fontWeight:bold;textDecorationLine:underline;textDecorationStyle: dashed;">New</span>
with col_3_3:
demo_3 = st.button("Launch",key = "demo_3")
if(demo_3):
st.switch_page('pages/AI_Shopping_Assistant.py')
isExist = os.path.exists("/home/user/images_retail")
if not isExist:
os.makedirs("/home/user/images_retail")
metadata_file = urllib.request.urlretrieve('https://aws-blogs-artifacts-public.s3.amazonaws.com/BDB-3144/products-data.yml', '/home/user/products.yaml')
img_filename,headers= urllib.request.urlretrieve('https://aws-blogs-artifacts-public.s3.amazonaws.com/BDB-3144/images.tar.gz', '/home/user/images_retail/images.tar.gz')
print(img_filename)
file = tarfile.open('/home/user/images_retail/images.tar.gz')
file.extractall('/home/user/images_retail/')
file.close()
#remove images.tar.gz
os.remove('/home/user/images_retail/images.tar.gz')