OpenSearch-AI / RAG /bedrock_agent.py
prasadnu's picture
rerank model
da86235
import boto3
import json
import time
import zipfile
from io import BytesIO
import uuid
import pprint
import logging
from PIL import Image
import os
import base64
import re
import requests
#import utilities.re_ranker as re_ranker
import utilities.invoke_models as invoke_models
import streamlit as st
import time as t
import botocore.exceptions
if "inputs_" not in st.session_state:
st.session_state.inputs_ = {}
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
region = 'us-east-1'
# setting logger
logging.basicConfig(format='[%(asctime)s] p%(process)s {%(filename)s:%(lineno)d} %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
# getting boto3 clients for required AWS services
#bedrock_agent_client = boto3.client('bedrock-agent',region_name=region)
bedrock_agent_runtime_client = boto3.client(
'bedrock-agent-runtime',
aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1'
)
enable_trace:bool = True
end_session:bool = False
def delete_memory():
response = bedrock_agent_runtime_client.delete_agent_memory(
agentAliasId='TSTALIASID',
agentId='B4Z7BTURC4'
)
def query_(inputs):
# invoke the agent API
agentResponse = bedrock_agent_runtime_client.invoke_agent(
inputText=inputs['shopping_query'],
agentId='B4Z7BTURC4',
agentAliasId='TSTALIASID',
sessionId=st.session_state.session_id_,
enableTrace=enable_trace,
endSession= end_session
)
logger.info(pprint.pprint(agentResponse))
print("***agent*****response*********")
print(agentResponse)
event_stream = agentResponse['completion']
total_context = []
last_tool = ""
last_tool_name = ""
agent_answer = ""
try:
for event in event_stream:
print("***event*********")
print(event)
if 'trace' in event:
print("trace*****total*********")
print(event['trace'])
if('orchestrationTrace' not in event['trace']['trace']):
continue
orchestration_trace = event['trace']['trace']['orchestrationTrace']
total_context_item = {}
if('modelInvocationOutput' in orchestration_trace and '<tool_name>' in orchestration_trace['modelInvocationOutput']['rawResponse']['content']):
total_context_item['tool'] = orchestration_trace['modelInvocationOutput']['rawResponse']
if('rationale' in orchestration_trace):
total_context_item['rationale'] = orchestration_trace['rationale']['text']
if('invocationInput' in orchestration_trace):
total_context_item['invocationInput'] = orchestration_trace['invocationInput']['actionGroupInvocationInput']
last_tool_name = total_context_item['invocationInput']['function']
if('observation' in orchestration_trace):
print("trace****observation******")
total_context_item['observation'] = event['trace']['trace']['orchestrationTrace']['observation']
tool_output_last_obs = event['trace']['trace']['orchestrationTrace']['observation']
print(tool_output_last_obs)
if(tool_output_last_obs['type'] == 'ACTION_GROUP'):
last_tool = tool_output_last_obs['actionGroupInvocationOutput']['text']
if(tool_output_last_obs['type'] == 'FINISH'):
agent_answer = tool_output_last_obs['finalResponse']['text']
if('modelInvocationOutput' in orchestration_trace and '<thinking>' in orchestration_trace['modelInvocationOutput']['rawResponse']['content']):
total_context_item['thinking'] = orchestration_trace['modelInvocationOutput']['rawResponse']
if(total_context_item!={}):
total_context.append(total_context_item)
print("total_context------")
print(total_context)
except botocore.exceptions.EventStreamError as error:
raise error
return {'text':agent_answer,'source':total_context,'last_tool':{'name':last_tool_name,'response':last_tool}}