OpenSearch-AI / RAG /rag_DocumentSearcher.py
prasadnu's picture
change ksize in RAG
5195f8b
import boto3
import json
import os
import streamlit as st
import base64
import re
import requests
#import utilities.re_ranker as re_ranker
import utilities.invoke_models as invoke_models
#import langchain
headers = {"Content-Type": "application/json"}
host = "https://search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com/"
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
def query_(awsauth,inputs, session_id,search_types):
print("using index: "+st.session_state.input_index)
question = inputs['query']
k=1
embedding = invoke_models.invoke_model_mm(question,"none")
query_mm = {
"size": k,
"_source": {
"exclude": [
"processed_element_embedding_bedrock-multimodal","processed_element_embedding_sparse","image_encoding","processed_element_embedding"
]
},
"query": {
"knn": {
"processed_element_embedding_bedrock-multimodal": {
"vector": embedding,
"k": k}
}
}
}
path = st.session_state.input_index+"_mm/_search"
url = host+path
r = requests.get(url, auth=awsauth, json=query_mm, headers=headers)
response_mm = json.loads(r.text)
hits = response_mm['hits']['hits']
context = []
context_tables = []
images = []
for hit in hits:
images.append({'file':hit['_source']['image'],'caption':hit['_source']['processed_element']})
####### SEARCH ########
num_queries = len(search_types)
weights = []
searches = ['Keyword','Vector','NeuralSparse']
equal_weight = (int(100/num_queries) )/100
s_pipeline_payload = {}
s_pipeline_path = "_search/pipeline/rag-search-pipeline"
if(st.session_state.input_is_rerank):
s_pipeline_payload["response_processors"] = [
{
"rerank": {
"ml_opensearch": {
"model_id": "deBS3pYB5VHEj-qVuPHT"
},
"context": {
"document_fields": [
"processed_element"
]
}
}
}
]
if(num_queries>1):
for index,search in enumerate(search_types):
if(index != (num_queries-1)):
weight = equal_weight
else:
weight = 1-sum(weights)
weights.append(weight)
s_pipeline_payload["phase_results_processors"] = [
{
"normalization-processor": {
"normalization": {
"technique": "min_max"
},
"combination": {
"technique": "arithmetic_mean",
"parameters": {
"weights": weights
}
}
}
}
]
SIZE = 5
hybrid_payload = {
"_source": {
"exclude": [
"processed_element_embedding","processed_element_embedding_sparse"
]
},
"query": {
"hybrid": {
"queries": [
#1. keyword query
#2. vector search query
#3. Sparse query
]
}
},"size":SIZE,
}
if('Keyword Search' in search_types):
keyword_payload = {
"match": {
"processed_element": {
"query": question
}
}
}
hybrid_payload["query"]["hybrid"]["queries"].append(keyword_payload)
if('Vector Search' in search_types):
embedding = invoke_models.invoke_model(question)
vector_payload = {
"knn": {
"processed_element_embedding": {
"vector": embedding,
"k": 2}
}
}
hybrid_payload["query"]["hybrid"]["queries"].append(vector_payload)
if('Sparse Search' in search_types):
sparse_payload = { "neural_sparse": {
"processed_element_embedding_sparse": {
"query_text": question,
"model_id": "fkol-ZMBTp0efWqBcO2P"
}
}}
hybrid_payload["query"]["hybrid"]["queries"].append(sparse_payload)
# path2 = "_plugins/_ml/models/srrJ-owBQhe1aB-khx2n/_predict"
# url2 = host+path2
# payload2 = {
# "parameters": {
# "inputs": question
# }
# }
# r2 = requests.post(url2, auth=awsauth, json=payload2, headers=headers)
# sparse_ = json.loads(r2.text)
# query_sparse = sparse_["inference_results"][0]["output"][0]["dataAsMap"]["response"][0]
hits = []
if(num_queries>1):
s_pipeline_url = host + s_pipeline_path
r = requests.put(s_pipeline_url, auth=awsauth, json=s_pipeline_payload, headers=headers)
path = st.session_state.input_index+"/_search?search_pipeline=rag-search-pipeline"
else:
if(st.session_state.input_is_rerank):
path = st.session_state.input_index+"/_search?search_pipeline=rerank_pipeline_rag"
else:
path = st.session_state.input_index+"/_search"
url = host+path
if(len(hybrid_payload["query"]["hybrid"]["queries"])==1):
single_query = hybrid_payload["query"]["hybrid"]["queries"][0]
del hybrid_payload["query"]["hybrid"]
hybrid_payload["query"] = single_query
if(st.session_state.input_is_rerank):
hybrid_payload["ext"] = {"rerank": {
"query_context": {
"query_text": question
}
}}
r = requests.get(url, auth=awsauth, json=hybrid_payload, headers=headers)
response_ = json.loads(r.text)
print(response_)
hits = response_['hits']['hits']
else:
if(st.session_state.input_is_rerank):
hybrid_payload["ext"] = {"rerank": {
"query_context": {
"query_text": question
}
}}
r = requests.get(url, auth=awsauth, json=hybrid_payload, headers=headers)
response_ = json.loads(r.text)
hits = response_['hits']['hits']
##### GET reference tables separately like *_mm index search for images ######
# def lazy_get_table():
# table_ref = []
# any_table_exists = False
# for fname in os.listdir(parent_dirname+"/split_pdf_csv"):
# if fname.startswith(st.session_state.input_index):
# any_table_exists = True
# break
# if(any_table_exists):
# #################### Basic Match query #################
# # payload_tables = {
# # "query": {
# # "bool":{
# # "must":{"match": {
# # "processed_element": question
# # }},
# # "filter":{"term":{"raw_element_type": "table"}}
# # }}}
# #################### Neural Sparse query #################
# payload_tables = {"query":{"neural_sparse": {
# "processed_element_embedding_sparse": {
# "query_text": question,
# "model_id": "fkol-ZMBTp0efWqBcO2P"
# }
# } } }
# r_ = requests.get(url, auth=awsauth, json=payload_tables, headers=headers)
# r_tables = json.loads(r_.text)
# for res_ in r_tables['hits']['hits']:
# if(res_["_source"]['raw_element_type'] == 'table'):
# table_ref.append({'name':res_["_source"]['table'],'text':res_["_source"]['processed_element']})
# if(len(table_ref) == 2):
# break
# return table_ref
########################### LLM Generation ########################
prompt_template = """
The following is a friendly conversation between a human and an AI.
The AI is talkative and provides lots of specific details from its context.
{context}
Instruction: Based on the above documents, provide a detailed answer for, {question}. Answer "don't know",
if not present in the context.
Solution:"""
idx = 0
images_2 = []
is_table_in_result = False
df = []
for hit in hits[0:5]:
if(hit["_source"]["raw_element_type"] == 'table'):
#print("Need to analyse table")
is_table_in_result = True
table_res = invoke_models.read_from_table(hit["_source"]["table"],question)
df.append({'name':hit["_source"]["table"],'text':hit["_source"]["processed_element"]})
context_tables.append(table_res+"\n\n"+hit["_source"]["processed_element"])
else:
if(hit["_source"]["image"]!="None"):
with open(parent_dirname+'/figures/'+st.session_state.input_index+"/"+hit["_source"]["raw_element_type"].split("_")[1].replace(".jpg","")+"-resized.jpg", "rb") as read_img:
input_encoded = base64.b64encode(read_img.read()).decode("utf8")
context.append(invoke_models.generate_image_captions_llm(input_encoded,question))
else:
context.append(hit["_source"]["processed_element"])
if(hit["_source"]["image"]!="None"):
images_2.append({'file':hit["_source"]["image"],'caption':hit["_source"]["processed_element"]})
idx = idx +1
# if(is_table_in_result == False):
# df = lazy_get_table()
# print("forcefully selected top 2 tables")
# print(df)
# for pos,table in enumerate(df):
# table_res = invoke_models.read_from_table(table['name'],question)
# context_tables.append(table_res)#+"\n\n"+table['text']
total_context = context_tables + context
llm_prompt = prompt_template.format(context=total_context[0],question=question)
output = invoke_models.invoke_llm_model( "\n\nHuman: {input}\n\nAssistant:".format(input=llm_prompt) ,False)
if(len(images_2)==0):
images_2 = images
return {'text':output,'source':total_context,'image':images_2,'table':df}