Spaces:
Running
on
T4
Running
on
T4
import boto3 | |
import json | |
import os | |
import streamlit as st | |
import base64 | |
import re | |
import requests | |
#import utilities.re_ranker as re_ranker | |
import utilities.invoke_models as invoke_models | |
#import langchain | |
headers = {"Content-Type": "application/json"} | |
host = "https://search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com/" | |
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1]) | |
def query_(awsauth,inputs, session_id,search_types): | |
print("using index: "+st.session_state.input_index) | |
question = inputs['query'] | |
k=1 | |
embedding = invoke_models.invoke_model_mm(question,"none") | |
query_mm = { | |
"size": k, | |
"_source": { | |
"exclude": [ | |
"processed_element_embedding_bedrock-multimodal","processed_element_embedding_sparse","image_encoding","processed_element_embedding" | |
] | |
}, | |
"query": { | |
"knn": { | |
"processed_element_embedding_bedrock-multimodal": { | |
"vector": embedding, | |
"k": k} | |
} | |
} | |
} | |
path = st.session_state.input_index+"_mm/_search" | |
url = host+path | |
r = requests.get(url, auth=awsauth, json=query_mm, headers=headers) | |
response_mm = json.loads(r.text) | |
hits = response_mm['hits']['hits'] | |
context = [] | |
context_tables = [] | |
images = [] | |
for hit in hits: | |
images.append({'file':hit['_source']['image'],'caption':hit['_source']['processed_element']}) | |
####### SEARCH ######## | |
num_queries = len(search_types) | |
weights = [] | |
searches = ['Keyword','Vector','NeuralSparse'] | |
equal_weight = (int(100/num_queries) )/100 | |
s_pipeline_payload = {} | |
s_pipeline_path = "_search/pipeline/rag-search-pipeline" | |
if(st.session_state.input_is_rerank): | |
s_pipeline_payload["response_processors"] = [ | |
{ | |
"rerank": { | |
"ml_opensearch": { | |
"model_id": "deBS3pYB5VHEj-qVuPHT" | |
}, | |
"context": { | |
"document_fields": [ | |
"processed_element" | |
] | |
} | |
} | |
} | |
] | |
if(num_queries>1): | |
for index,search in enumerate(search_types): | |
if(index != (num_queries-1)): | |
weight = equal_weight | |
else: | |
weight = 1-sum(weights) | |
weights.append(weight) | |
s_pipeline_payload["phase_results_processors"] = [ | |
{ | |
"normalization-processor": { | |
"normalization": { | |
"technique": "min_max" | |
}, | |
"combination": { | |
"technique": "arithmetic_mean", | |
"parameters": { | |
"weights": weights | |
} | |
} | |
} | |
} | |
] | |
SIZE = 5 | |
hybrid_payload = { | |
"_source": { | |
"exclude": [ | |
"processed_element_embedding","processed_element_embedding_sparse" | |
] | |
}, | |
"query": { | |
"hybrid": { | |
"queries": [ | |
#1. keyword query | |
#2. vector search query | |
#3. Sparse query | |
] | |
} | |
},"size":SIZE, | |
} | |
if('Keyword Search' in search_types): | |
keyword_payload = { | |
"match": { | |
"processed_element": { | |
"query": question | |
} | |
} | |
} | |
hybrid_payload["query"]["hybrid"]["queries"].append(keyword_payload) | |
if('Vector Search' in search_types): | |
embedding = invoke_models.invoke_model(question) | |
vector_payload = { | |
"knn": { | |
"processed_element_embedding": { | |
"vector": embedding, | |
"k": 2} | |
} | |
} | |
hybrid_payload["query"]["hybrid"]["queries"].append(vector_payload) | |
if('Sparse Search' in search_types): | |
sparse_payload = { "neural_sparse": { | |
"processed_element_embedding_sparse": { | |
"query_text": question, | |
"model_id": "fkol-ZMBTp0efWqBcO2P" | |
} | |
}} | |
hybrid_payload["query"]["hybrid"]["queries"].append(sparse_payload) | |
# path2 = "_plugins/_ml/models/srrJ-owBQhe1aB-khx2n/_predict" | |
# url2 = host+path2 | |
# payload2 = { | |
# "parameters": { | |
# "inputs": question | |
# } | |
# } | |
# r2 = requests.post(url2, auth=awsauth, json=payload2, headers=headers) | |
# sparse_ = json.loads(r2.text) | |
# query_sparse = sparse_["inference_results"][0]["output"][0]["dataAsMap"]["response"][0] | |
hits = [] | |
if(num_queries>1): | |
s_pipeline_url = host + s_pipeline_path | |
r = requests.put(s_pipeline_url, auth=awsauth, json=s_pipeline_payload, headers=headers) | |
path = st.session_state.input_index+"/_search?search_pipeline=rag-search-pipeline" | |
else: | |
if(st.session_state.input_is_rerank): | |
path = st.session_state.input_index+"/_search?search_pipeline=rerank_pipeline_rag" | |
else: | |
path = st.session_state.input_index+"/_search" | |
url = host+path | |
if(len(hybrid_payload["query"]["hybrid"]["queries"])==1): | |
single_query = hybrid_payload["query"]["hybrid"]["queries"][0] | |
del hybrid_payload["query"]["hybrid"] | |
hybrid_payload["query"] = single_query | |
if(st.session_state.input_is_rerank): | |
hybrid_payload["ext"] = {"rerank": { | |
"query_context": { | |
"query_text": question | |
} | |
}} | |
r = requests.get(url, auth=awsauth, json=hybrid_payload, headers=headers) | |
response_ = json.loads(r.text) | |
print(response_) | |
hits = response_['hits']['hits'] | |
else: | |
if(st.session_state.input_is_rerank): | |
hybrid_payload["ext"] = {"rerank": { | |
"query_context": { | |
"query_text": question | |
} | |
}} | |
r = requests.get(url, auth=awsauth, json=hybrid_payload, headers=headers) | |
response_ = json.loads(r.text) | |
hits = response_['hits']['hits'] | |
##### GET reference tables separately like *_mm index search for images ###### | |
# def lazy_get_table(): | |
# table_ref = [] | |
# any_table_exists = False | |
# for fname in os.listdir(parent_dirname+"/split_pdf_csv"): | |
# if fname.startswith(st.session_state.input_index): | |
# any_table_exists = True | |
# break | |
# if(any_table_exists): | |
# #################### Basic Match query ################# | |
# # payload_tables = { | |
# # "query": { | |
# # "bool":{ | |
# # "must":{"match": { | |
# # "processed_element": question | |
# # }}, | |
# # "filter":{"term":{"raw_element_type": "table"}} | |
# # }}} | |
# #################### Neural Sparse query ################# | |
# payload_tables = {"query":{"neural_sparse": { | |
# "processed_element_embedding_sparse": { | |
# "query_text": question, | |
# "model_id": "fkol-ZMBTp0efWqBcO2P" | |
# } | |
# } } } | |
# r_ = requests.get(url, auth=awsauth, json=payload_tables, headers=headers) | |
# r_tables = json.loads(r_.text) | |
# for res_ in r_tables['hits']['hits']: | |
# if(res_["_source"]['raw_element_type'] == 'table'): | |
# table_ref.append({'name':res_["_source"]['table'],'text':res_["_source"]['processed_element']}) | |
# if(len(table_ref) == 2): | |
# break | |
# return table_ref | |
########################### LLM Generation ######################## | |
prompt_template = """ | |
The following is a friendly conversation between a human and an AI. | |
The AI is talkative and provides lots of specific details from its context. | |
{context} | |
Instruction: Based on the above documents, provide a detailed answer for, {question}. Answer "don't know", | |
if not present in the context. | |
Solution:""" | |
idx = 0 | |
images_2 = [] | |
is_table_in_result = False | |
df = [] | |
for hit in hits[0:5]: | |
if(hit["_source"]["raw_element_type"] == 'table'): | |
#print("Need to analyse table") | |
is_table_in_result = True | |
table_res = invoke_models.read_from_table(hit["_source"]["table"],question) | |
df.append({'name':hit["_source"]["table"],'text':hit["_source"]["processed_element"]}) | |
context_tables.append(table_res+"\n\n"+hit["_source"]["processed_element"]) | |
else: | |
if(hit["_source"]["image"]!="None"): | |
with open(parent_dirname+'/figures/'+st.session_state.input_index+"/"+hit["_source"]["raw_element_type"].split("_")[1].replace(".jpg","")+"-resized.jpg", "rb") as read_img: | |
input_encoded = base64.b64encode(read_img.read()).decode("utf8") | |
context.append(invoke_models.generate_image_captions_llm(input_encoded,question)) | |
else: | |
context.append(hit["_source"]["processed_element"]) | |
if(hit["_source"]["image"]!="None"): | |
images_2.append({'file':hit["_source"]["image"],'caption':hit["_source"]["processed_element"]}) | |
idx = idx +1 | |
# if(is_table_in_result == False): | |
# df = lazy_get_table() | |
# print("forcefully selected top 2 tables") | |
# print(df) | |
# for pos,table in enumerate(df): | |
# table_res = invoke_models.read_from_table(table['name'],question) | |
# context_tables.append(table_res)#+"\n\n"+table['text'] | |
total_context = context_tables + context | |
llm_prompt = prompt_template.format(context=total_context[0],question=question) | |
output = invoke_models.invoke_llm_model( "\n\nHuman: {input}\n\nAssistant:".format(input=llm_prompt) ,False) | |
if(len(images_2)==0): | |
images_2 = images | |
return {'text':output,'source':total_context,'image':images_2,'table':df} | |