Spaces:
Running
on
T4
Running
on
T4
change ksize in RAG
Browse files- RAG/rag_DocumentSearcher.py +45 -14
RAG/rag_DocumentSearcher.py
CHANGED
@@ -29,13 +29,29 @@ def query_(awsauth,inputs, session_id,search_types):
|
|
29 |
"processed_element_embedding_bedrock-multimodal","processed_element_embedding_sparse","image_encoding","processed_element_embedding"
|
30 |
]
|
31 |
},
|
32 |
-
"query":
|
33 |
-
|
34 |
-
|
35 |
-
"
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
|
41 |
path = st.session_state.input_index+"_mm/_search"
|
@@ -141,14 +157,29 @@ def query_(awsauth,inputs, session_id,search_types):
|
|
141 |
if('Vector Search' in search_types):
|
142 |
|
143 |
embedding = invoke_models.invoke_model(question)
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
hybrid_payload["query"]["hybrid"]["queries"].append(vector_payload)
|
154 |
|
|
|
29 |
"processed_element_embedding_bedrock-multimodal","processed_element_embedding_sparse","image_encoding","processed_element_embedding"
|
30 |
]
|
31 |
},
|
32 |
+
"query": { # exact knn search
|
33 |
+
"script_score": {
|
34 |
+
"query": {
|
35 |
+
"match_all": {}
|
36 |
+
},
|
37 |
+
"script": {
|
38 |
+
"source": "knn_score",
|
39 |
+
"lang": "knn",
|
40 |
+
"params": {
|
41 |
+
"field": "processed_element_embedding_bedrock-multimodal",
|
42 |
+
"query_value": embedding,
|
43 |
+
"space_type": "cosinesimil"
|
44 |
+
}
|
45 |
+
}
|
46 |
}
|
47 |
+
}
|
48 |
+
# { #approximate knn search
|
49 |
+
# "knn": {
|
50 |
+
# "processed_element_embedding_bedrock-multimodal": {
|
51 |
+
# "vector": embedding,
|
52 |
+
# "k": k}
|
53 |
+
# }
|
54 |
+
# }
|
55 |
}
|
56 |
|
57 |
path = st.session_state.input_index+"_mm/_search"
|
|
|
157 |
if('Vector Search' in search_types):
|
158 |
|
159 |
embedding = invoke_models.invoke_model(question)
|
160 |
+
vector_payload = { # exact knn search
|
161 |
+
"script_score": {
|
162 |
+
"query": {
|
163 |
+
"match_all": {}
|
164 |
+
},
|
165 |
+
"script": {
|
166 |
+
"source": "knn_score",
|
167 |
+
"lang": "knn",
|
168 |
+
"params": {
|
169 |
+
"field": "processed_element_embedding",
|
170 |
+
"query_value": embedding,
|
171 |
+
"space_type": "cosinesimil"
|
172 |
+
}
|
173 |
+
}
|
174 |
+
}
|
175 |
+
}
|
176 |
+
# vector_payload = { # aproximate knn search
|
177 |
+
# "knn": {
|
178 |
+
# "processed_element_embedding": {
|
179 |
+
# "vector": embedding,
|
180 |
+
# "k": 2}
|
181 |
+
# }
|
182 |
+
# }
|
183 |
|
184 |
hybrid_payload["query"]["hybrid"]["queries"].append(vector_payload)
|
185 |
|