Spaces:
Running
on
T4
Running
on
T4
mvectors
Browse files- pages/Multimodal_Conversational_Search.py +0 -1
- pages/Semantic_Search.py +8 -1
- semantic_search/all_search_execute.py +41 -31
- utilities/mvectors.py +105 -0
pages/Multimodal_Conversational_Search.py
CHANGED
@@ -249,7 +249,6 @@ def render_answer(question,answer,index,res_img):
|
|
249 |
unsafe_allow_html=True
|
250 |
)
|
251 |
st.image(res_img[i]['file'])
|
252 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
253 |
else:
|
254 |
if(res_img[i]['file'].lower()!='none' and idx < 1):
|
255 |
col3,col4,col5 = st.columns([33,33,33])
|
|
|
249 |
unsafe_allow_html=True
|
250 |
)
|
251 |
st.image(res_img[i]['file'])
|
|
|
252 |
else:
|
253 |
if(res_img[i]['file'].lower()!='none' and idx < 1):
|
254 |
col3,col4,col5 = st.columns([33,33,33])
|
pages/Semantic_Search.py
CHANGED
@@ -671,7 +671,14 @@ if(search_all_type == True or 1==1):
|
|
671 |
########################## enable for query_rewrite ########################
|
672 |
if rewrite_query:
|
673 |
st.session_state.input_is_rewrite_query = 'enabled'
|
674 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
675 |
st.subheader(':blue[Hybrid Search]')
|
676 |
with st.expander("Set query Weightage:"):
|
677 |
st.number_input("Keyword %", min_value=0, max_value=100, value=100, step=5, key='input_Keyword-weight', help=None)
|
|
|
671 |
########################## enable for query_rewrite ########################
|
672 |
if rewrite_query:
|
673 |
st.session_state.input_is_rewrite_query = 'enabled'
|
674 |
+
st.subheader(':blue[Vector Search]')
|
675 |
+
|
676 |
+
mvector_rerank = st.checkbox("Search and Re-rank with Token level vectors",key = 'mvector_rerank',help = "Enabling this option uses 'all-MiniLM-L6-v2' model's token level embeddings to retrieve documents and MaxSim to re-rank documents.\n\n Hugging Face Model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2")
|
677 |
+
|
678 |
+
if(mvector_rerank):
|
679 |
+
st.session_state.input_mvector_rerank = True
|
680 |
+
else:
|
681 |
+
st.session_state.input_mvector_rerank = False
|
682 |
st.subheader(':blue[Hybrid Search]')
|
683 |
with st.expander("Set query Weightage:"):
|
684 |
st.number_input("Keyword %", min_value=0, max_value=100, value=100, step=5, key='input_Keyword-weight', help=None)
|
semantic_search/all_search_execute.py
CHANGED
@@ -18,10 +18,7 @@ from requests.auth import HTTPBasicAuth
|
|
18 |
from datetime import datetime
|
19 |
import boto3
|
20 |
import streamlit as st
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
current_date_time = (datetime.now()).isoformat()
|
26 |
today_ = datetime.today().strftime('%Y-%m-%d')
|
27 |
|
@@ -213,13 +210,19 @@ def handler(input_,session_id):
|
|
213 |
}
|
214 |
}]
|
215 |
del keyword_payload['match']
|
216 |
-
|
217 |
-
# print(keyword_payload)
|
218 |
-
|
219 |
-
|
220 |
hybrid_payload["query"]["hybrid"]["queries"].append(keyword_payload)
|
221 |
|
222 |
if('Vector Search' in search_types):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
# path3 = "_plugins/_ml/models/"+BEDROCK_TEXT_MODEL_ID+"/_predict"
|
225 |
|
@@ -249,7 +252,8 @@ def handler(input_,session_id):
|
|
249 |
# }
|
250 |
|
251 |
#using neural query
|
252 |
-
|
|
|
253 |
"neural": {
|
254 |
"product_description_vector": {
|
255 |
"query_text": query,
|
@@ -373,15 +377,8 @@ def handler(input_,session_id):
|
|
373 |
if(st.session_state.input_price!=(0,0)):
|
374 |
sparse_payload['bool']['filter'].append({"range": {"price": {"gte": st.session_state.input_price[0],"lte": st.session_state.input_price[1] }}})
|
375 |
|
376 |
-
|
377 |
-
# print("sparse_payload**************")
|
378 |
-
# print(sparse_payload)
|
379 |
-
|
380 |
-
|
381 |
###### end of efficient filter applying #####
|
382 |
-
|
383 |
-
|
384 |
-
#print(sparse_payload)
|
385 |
|
386 |
# sparse_payload = {
|
387 |
|
@@ -409,21 +406,34 @@ def handler(input_,session_id):
|
|
409 |
r = requests.post(url, auth=awsauth, json=payload, headers=headers)
|
410 |
|
411 |
if(len(hybrid_payload["query"]["hybrid"]["queries"])==1):
|
412 |
-
|
413 |
-
|
414 |
-
hybrid_payload["query"] = single_query
|
415 |
-
if(st.session_state.re_ranker == 'true' and st.session_state.input_reranker == 'Cohere Rerank'):
|
416 |
-
path = "demostore-search-index/_search?search_pipeline=rerank_pipeline"
|
417 |
url = host + path
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
|
429 |
else:
|
|
|
18 |
from datetime import datetime
|
19 |
import boto3
|
20 |
import streamlit as st
|
21 |
+
import utilities.mvectors as cb
|
|
|
|
|
|
|
22 |
current_date_time = (datetime.now()).isoformat()
|
23 |
today_ = datetime.today().strftime('%Y-%m-%d')
|
24 |
|
|
|
210 |
}
|
211 |
}]
|
212 |
del keyword_payload['match']
|
213 |
+
|
|
|
|
|
|
|
214 |
hybrid_payload["query"]["hybrid"]["queries"].append(keyword_payload)
|
215 |
|
216 |
if('Vector Search' in search_types):
|
217 |
+
if(st.session_state.input_mvector_rerank):
|
218 |
+
query_vector = cb.vectorise(query,False)
|
219 |
+
vector_field = "description_vector"
|
220 |
+
print("-------------COLBERT-----1-------------------------------------------------")
|
221 |
+
vector_payload = {"knn": {}}
|
222 |
+
vector_payload["knn"][vector_field]= {
|
223 |
+
"vector":query_vector,
|
224 |
+
"k": k_
|
225 |
+
}
|
226 |
|
227 |
# path3 = "_plugins/_ml/models/"+BEDROCK_TEXT_MODEL_ID+"/_predict"
|
228 |
|
|
|
252 |
# }
|
253 |
|
254 |
#using neural query
|
255 |
+
else:
|
256 |
+
vector_payload = {
|
257 |
"neural": {
|
258 |
"product_description_vector": {
|
259 |
"query_text": query,
|
|
|
377 |
if(st.session_state.input_price!=(0,0)):
|
378 |
sparse_payload['bool']['filter'].append({"range": {"price": {"gte": st.session_state.input_price[0],"lte": st.session_state.input_price[1] }}})
|
379 |
|
380 |
+
|
|
|
|
|
|
|
|
|
381 |
###### end of efficient filter applying #####
|
|
|
|
|
|
|
382 |
|
383 |
# sparse_payload = {
|
384 |
|
|
|
406 |
r = requests.post(url, auth=awsauth, json=payload, headers=headers)
|
407 |
|
408 |
if(len(hybrid_payload["query"]["hybrid"]["queries"])==1):
|
409 |
+
if(st.session_state.input_mvector_rerank and 'Vector Search' in search_types):
|
410 |
+
path = "retail-search-colbert-description/_search"
|
|
|
|
|
|
|
411 |
url = host + path
|
412 |
+
r = requests.get(url, auth=awsauth, json=hybrid_payload, headers=headers)
|
413 |
+
print(r.status_code)
|
414 |
+
#print(r.text)
|
415 |
+
response_ = json.loads(r.text)
|
416 |
+
print("-------------colbert ---- 3-----------")
|
417 |
+
#print(response_)
|
418 |
+
docs = response_['hits']['hits']
|
419 |
+
docs = cb.search(docs)
|
420 |
+
print("-------------COLBERT------------5------------------------------------------")
|
421 |
+
else:
|
422 |
+
single_query = hybrid_payload["query"]["hybrid"]["queries"][0]
|
423 |
+
del hybrid_payload["query"]["hybrid"]
|
424 |
+
hybrid_payload["query"] = single_query
|
425 |
+
if(st.session_state.re_ranker == 'true' and st.session_state.input_reranker == 'Cohere Rerank'):
|
426 |
+
path = "demostore-search-index/_search?search_pipeline=rerank_pipeline"
|
427 |
+
url = host + path
|
428 |
+
hybrid_payload["ext"] = {"rerank": {
|
429 |
+
"query_context": {
|
430 |
+
"query_text": query
|
431 |
+
}
|
432 |
+
}}
|
433 |
+
|
434 |
+
r = requests.get(url, auth=awsauth, json=hybrid_payload, headers=headers)
|
435 |
+
response_ = json.loads(r.text)
|
436 |
+
docs = response_['hits']['hits']
|
437 |
|
438 |
|
439 |
else:
|
utilities/mvectors.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
import streamlit as st
|
6 |
+
import boto3
|
7 |
+
import json
|
8 |
+
|
9 |
+
runtime = boto3.client('sagemaker-runtime',region_name='us-east-1')
|
10 |
+
# Load model from HuggingFace Hub
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
12 |
+
endpoint_name = 'huggingface-pytorch-inference-2025-05-21-16-31-07-967'
|
13 |
+
|
14 |
+
|
15 |
+
def mean_pooling(token_embeddings, attention_mask):
|
16 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
17 |
+
return torch.sum(token_embeddings * input_mask_expanded, dim=1) / \
|
18 |
+
torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)
|
19 |
+
|
20 |
+
|
21 |
+
def vectorise(sentence,token_level_vectors):
|
22 |
+
print("-------------colbert ---- 2-----------")
|
23 |
+
encoded_input = tokenizer(sentence, padding=True, truncation=True, return_tensors='pt')
|
24 |
+
# Get input IDs (token IDs)
|
25 |
+
input_ids = encoded_input['input_ids'][0]
|
26 |
+
|
27 |
+
# Convert IDs to tokens
|
28 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
29 |
+
model_output = runtime.invoke_endpoint(
|
30 |
+
EndpointName=endpoint_name,
|
31 |
+
ContentType="application/json",
|
32 |
+
Body=json.dumps({"inputs": sentence})
|
33 |
+
)
|
34 |
+
token_vectors = json.loads(model_output['Body'].read().decode())
|
35 |
+
if(token_level_vectors):
|
36 |
+
return tokens,token_vectors
|
37 |
+
|
38 |
+
token_vectors_tensor = torch.tensor(token_vectors)
|
39 |
+
attention_mask = encoded_input['attention_mask']
|
40 |
+
|
41 |
+
# Perform pooling
|
42 |
+
sentence_embeddings = mean_pooling(token_vectors_tensor, attention_mask)
|
43 |
+
|
44 |
+
# Normalize embeddings
|
45 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
46 |
+
|
47 |
+
return sentence_embeddings[0].tolist()
|
48 |
+
|
49 |
+
def search(hits):
|
50 |
+
print("-------------COLBERT------------4------------------------------------------")
|
51 |
+
tokens,token_vectors = vectorise(st.session_state.input_text,True)
|
52 |
+
final_docs = []
|
53 |
+
for ind,j in enumerate(hits):
|
54 |
+
max_score_dict_list = []
|
55 |
+
doc={"_source":
|
56 |
+
{
|
57 |
+
"description":j["_source"]["description"],"caption":j["_source"]["title"],
|
58 |
+
"image_s3_url":j["_source"]["image_s3_url"],"price":j["_source"]["price"],
|
59 |
+
"style":j["_source"]["style"],"category":j["_source"]["category"]},"_id":j["_id"],"_score":j["_score"]}
|
60 |
+
|
61 |
+
if("gender_affinity" in j["_source"]):
|
62 |
+
doc["_source"]["gender_affinity"] = j["_source"]["gender_affinity"]
|
63 |
+
else:
|
64 |
+
doc["_source"]["gender_affinity"] = ""
|
65 |
+
#print(j["_source"]["title"])
|
66 |
+
source_doc_token_keys = list(j["_source"].keys())
|
67 |
+
with_s = [x for x in source_doc_token_keys if x.startswith("description-token-")]
|
68 |
+
add_score = 0
|
69 |
+
|
70 |
+
for index,i in enumerate(token_vectors[0]):
|
71 |
+
token = tokens[index]
|
72 |
+
if(token!='[SEP]' and token!='[CLS]'):
|
73 |
+
query_token_vector = np.array(i)
|
74 |
+
print("query token: "+token)
|
75 |
+
print("-----------------")
|
76 |
+
scores = []
|
77 |
+
for m in with_s:
|
78 |
+
m_arr = m.split("-")
|
79 |
+
if(m_arr[-1]!='[SEP]' and m_arr[-1]!='[CLS]'):
|
80 |
+
#print("document token: "+m_arr[3])
|
81 |
+
doc_token_vector = np.array(j["_source"][m])
|
82 |
+
score = np.dot(query_token_vector,doc_token_vector)
|
83 |
+
scores.append({"doc_token":m_arr[3],"score":score})
|
84 |
+
#print({"doc_token":m_arr[3],"score":score})
|
85 |
+
|
86 |
+
newlist = sorted(scores, key=lambda d: d['score'], reverse=True)
|
87 |
+
max_score = newlist[0]['score']
|
88 |
+
add_score+=max_score
|
89 |
+
max_score_dict_list.append(newlist[0])
|
90 |
+
print(newlist[0])
|
91 |
+
max_score_dict_list_sorted = sorted(max_score_dict_list, key=lambda d: d['score'], reverse=True)
|
92 |
+
print(max_score_dict_list_sorted)
|
93 |
+
# print(add_score)
|
94 |
+
doc["total_score"] = add_score
|
95 |
+
doc['max_score_dict_list_sorted'] = max_score_dict_list_sorted
|
96 |
+
final_docs.append(doc)
|
97 |
+
final_docs_sorted = sorted(final_docs, key=lambda d: d['total_score'], reverse=True)
|
98 |
+
print("-------------COLBERT-----final--------")
|
99 |
+
print(final_docs_sorted)
|
100 |
+
return final_docs_sorted
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|