Spaces:
Running
on
T4
Running
on
T4
mvectors
Browse files- semantic_search/llm_eval.py +6 -10
semantic_search/llm_eval.py
CHANGED
@@ -73,19 +73,15 @@ def eval(question, answers):
|
|
73 |
response = llm.invoke_llm_model(prompt,False)
|
74 |
#response = textgen_llm(prompt)
|
75 |
print("Response from LLM: ", response)
|
76 |
-
inter_trim =response.split("[")[1]
|
77 |
-
final_out = json.loads('{"results":['+inter_trim.split("]")[0]+']}')
|
78 |
llm_scores = []
|
79 |
current_scores = []
|
80 |
for idx,i in enumerate(answers[0]['answer']):
|
81 |
-
if('relevant' in
|
82 |
-
relevance =
|
83 |
-
|
84 |
-
|
85 |
-
if('score' in final_out['results'][idx]):
|
86 |
-
score_ = final_out['results'][idx]['score']
|
87 |
-
else:
|
88 |
-
score_ = final_out['results'][idx]['Score']
|
89 |
i['relevant'] = relevance
|
90 |
llm_scores.append(score_)
|
91 |
current_scores.append(i['score'])
|
|
|
73 |
response = llm.invoke_llm_model(prompt,False)
|
74 |
#response = textgen_llm(prompt)
|
75 |
print("Response from LLM: ", response)
|
76 |
+
# inter_trim =response.split("[")[1]
|
77 |
+
# final_out = json.loads('{"results":['+inter_trim.split("]")[0]+']}')
|
78 |
llm_scores = []
|
79 |
current_scores = []
|
80 |
for idx,i in enumerate(answers[0]['answer']):
|
81 |
+
if('relevant' in response[idx]):
|
82 |
+
relevance = response[idx]['relevant']
|
83 |
+
if('score' in response[idx]):
|
84 |
+
score_ = response[idx]['relevant']
|
|
|
|
|
|
|
|
|
85 |
i['relevant'] = relevance
|
86 |
llm_scores.append(score_)
|
87 |
current_scores.append(i['score'])
|