Spaces:
Running
on
T4
Running
on
T4
rerank model
Browse files
RAG/rag_DocumentSearcher.py
CHANGED
@@ -12,7 +12,7 @@ headers = {"Content-Type": "application/json"}
|
|
12 |
host = "https://search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com/"
|
13 |
|
14 |
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
|
15 |
-
|
16 |
def query_(awsauth,inputs, session_id,search_types):
|
17 |
|
18 |
print("using index: "+st.session_state.input_index)
|
|
|
12 |
host = "https://search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com/"
|
13 |
|
14 |
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
|
15 |
+
@st.cache_data
|
16 |
def query_(awsauth,inputs, session_id,search_types):
|
17 |
|
18 |
print("using index: "+st.session_state.input_index)
|
pages/Multimodal_Conversational_Search.py
CHANGED
@@ -39,6 +39,7 @@ AI_ICON = "images/opensearch-twitter-card.png"
|
|
39 |
REGENERATE_ICON = "images/regenerate.png"
|
40 |
s3_bucket_ = "pdf-repo-uploads"
|
41 |
#"pdf-repo-uploads"
|
|
|
42 |
polly_client = boto3.client('polly',aws_access_key_id=st.secrets['user_access_key'],
|
43 |
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1')
|
44 |
|
@@ -99,6 +100,7 @@ if "input_rag_searchType" not in st.session_state:
|
|
99 |
|
100 |
|
101 |
region = 'us-east-1'
|
|
|
102 |
bedrock_runtime_client = boto3.client('bedrock-runtime',region_name=region)
|
103 |
output = []
|
104 |
service = 'es'
|
@@ -345,8 +347,6 @@ def render_answer(question,answer,index,res_img):
|
|
345 |
|
346 |
rdn_key = ''.join([random.choice(string.ascii_letters)
|
347 |
for _ in range(10)])
|
348 |
-
# rdn_key_1 = ''.join([random.choice(string.ascii_letters)
|
349 |
-
# for _ in range(10)])
|
350 |
currentValue = ''.join(st.session_state.input_rag_searchType)+str(st.session_state.input_is_rerank)+str(st.session_state.input_table_with_sql)+st.session_state.input_index
|
351 |
oldValue = ''.join(st.session_state.inputs_["rag_searchType"])+str(st.session_state.inputs_["is_rerank"])+str(st.session_state.inputs_["table_with_sql"])+str(st.session_state.inputs_["index"])
|
352 |
def on_button_click():
|
@@ -358,12 +358,6 @@ def render_answer(question,answer,index,res_img):
|
|
358 |
handle_input()
|
359 |
with placeholder.container():
|
360 |
render_all()
|
361 |
-
# def show_maxsim():
|
362 |
-
# st.session_state.show_columns = True
|
363 |
-
# st.session_state.maxSimImages = colpali.img_highlight(st.session_state.top_img, st.session_state.query_token_vectors, st.session_state.query_tokens)
|
364 |
-
# handle_input()
|
365 |
-
# with placeholder.container():
|
366 |
-
# render_all()
|
367 |
if("currentValue" in st.session_state):
|
368 |
del st.session_state["currentValue"]
|
369 |
|
|
|
39 |
REGENERATE_ICON = "images/regenerate.png"
|
40 |
s3_bucket_ = "pdf-repo-uploads"
|
41 |
#"pdf-repo-uploads"
|
42 |
+
@st.cache_data
|
43 |
polly_client = boto3.client('polly',aws_access_key_id=st.secrets['user_access_key'],
|
44 |
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1')
|
45 |
|
|
|
100 |
|
101 |
|
102 |
region = 'us-east-1'
|
103 |
+
@st.cache_data
|
104 |
bedrock_runtime_client = boto3.client('bedrock-runtime',region_name=region)
|
105 |
output = []
|
106 |
service = 'es'
|
|
|
347 |
|
348 |
rdn_key = ''.join([random.choice(string.ascii_letters)
|
349 |
for _ in range(10)])
|
|
|
|
|
350 |
currentValue = ''.join(st.session_state.input_rag_searchType)+str(st.session_state.input_is_rerank)+str(st.session_state.input_table_with_sql)+st.session_state.input_index
|
351 |
oldValue = ''.join(st.session_state.inputs_["rag_searchType"])+str(st.session_state.inputs_["is_rerank"])+str(st.session_state.inputs_["table_with_sql"])+str(st.session_state.inputs_["index"])
|
352 |
def on_button_click():
|
|
|
358 |
handle_input()
|
359 |
with placeholder.container():
|
360 |
render_all()
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
if("currentValue" in st.session_state):
|
362 |
del st.session_state["currentValue"]
|
363 |
|
utilities/invoke_models.py
CHANGED
@@ -11,6 +11,7 @@ import streamlit as st
|
|
11 |
#import torch
|
12 |
|
13 |
region = 'us-east-1'
|
|
|
14 |
bedrock_runtime_client = boto3.client(
|
15 |
'bedrock-runtime',
|
16 |
aws_access_key_id=st.secrets['user_access_key'],
|
@@ -29,7 +30,7 @@ bedrock_runtime_client = boto3.client(
|
|
29 |
# max_length = 16
|
30 |
# num_beams = 4
|
31 |
# gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
32 |
-
|
33 |
def invoke_model(input):
|
34 |
response = bedrock_runtime_client.invoke_model(
|
35 |
body=json.dumps({
|
@@ -42,7 +43,7 @@ def invoke_model(input):
|
|
42 |
|
43 |
response_body = json.loads(response.get("body").read())
|
44 |
return response_body.get("embedding")
|
45 |
-
|
46 |
def invoke_model_mm(text,img):
|
47 |
body_ = {
|
48 |
"inputText": text,
|
@@ -63,7 +64,7 @@ def invoke_model_mm(text,img):
|
|
63 |
response_body = json.loads(response.get("body").read())
|
64 |
#print(response_body)
|
65 |
return response_body.get("embedding")
|
66 |
-
|
67 |
def invoke_llm_model(input,is_stream):
|
68 |
if(is_stream == False):
|
69 |
response = bedrock_runtime_client.invoke_model(
|
@@ -144,7 +145,7 @@ def invoke_llm_model(input,is_stream):
|
|
144 |
# stream = response.get('body')
|
145 |
|
146 |
# return stream
|
147 |
-
|
148 |
def read_from_table(file,question):
|
149 |
print("started table analysis:")
|
150 |
print("-----------------------")
|
@@ -159,7 +160,7 @@ def read_from_table(file,question):
|
|
159 |
"top_p":0.7,
|
160 |
"stop_sequences":["\\n\\nHuman:"]
|
161 |
}
|
162 |
-
|
163 |
model = BedrockChat(
|
164 |
client=bedrock_runtime_client,
|
165 |
model_id='anthropic.claude-3-sonnet-20240229-v1:0',
|
@@ -180,7 +181,7 @@ def read_from_table(file,question):
|
|
180 |
)
|
181 |
agent_res = agent.invoke(question)['output']
|
182 |
return agent_res
|
183 |
-
|
184 |
def generate_image_captions_llm(base64_string,question):
|
185 |
|
186 |
# ant_client = Anthropic()
|
|
|
11 |
#import torch
|
12 |
|
13 |
region = 'us-east-1'
|
14 |
+
@st.cache_data
|
15 |
bedrock_runtime_client = boto3.client(
|
16 |
'bedrock-runtime',
|
17 |
aws_access_key_id=st.secrets['user_access_key'],
|
|
|
30 |
# max_length = 16
|
31 |
# num_beams = 4
|
32 |
# gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
33 |
+
@st.cache_data
|
34 |
def invoke_model(input):
|
35 |
response = bedrock_runtime_client.invoke_model(
|
36 |
body=json.dumps({
|
|
|
43 |
|
44 |
response_body = json.loads(response.get("body").read())
|
45 |
return response_body.get("embedding")
|
46 |
+
@st.cache_data
|
47 |
def invoke_model_mm(text,img):
|
48 |
body_ = {
|
49 |
"inputText": text,
|
|
|
64 |
response_body = json.loads(response.get("body").read())
|
65 |
#print(response_body)
|
66 |
return response_body.get("embedding")
|
67 |
+
@st.cache_data
|
68 |
def invoke_llm_model(input,is_stream):
|
69 |
if(is_stream == False):
|
70 |
response = bedrock_runtime_client.invoke_model(
|
|
|
145 |
# stream = response.get('body')
|
146 |
|
147 |
# return stream
|
148 |
+
@st.cache_data
|
149 |
def read_from_table(file,question):
|
150 |
print("started table analysis:")
|
151 |
print("-----------------------")
|
|
|
160 |
"top_p":0.7,
|
161 |
"stop_sequences":["\\n\\nHuman:"]
|
162 |
}
|
163 |
+
@st.cache_data
|
164 |
model = BedrockChat(
|
165 |
client=bedrock_runtime_client,
|
166 |
model_id='anthropic.claude-3-sonnet-20240229-v1:0',
|
|
|
181 |
)
|
182 |
agent_res = agent.invoke(question)['output']
|
183 |
return agent_res
|
184 |
+
@st.cache_data
|
185 |
def generate_image_captions_llm(base64_string,question):
|
186 |
|
187 |
# ant_client = Anthropic()
|