Spaces:
Running
on
T4
Running
on
T4
search pipeline updated
Browse files- RAG/rag_DocumentSearcher.py +39 -31
RAG/rag_DocumentSearcher.py
CHANGED
@@ -49,12 +49,6 @@ def query_(awsauth,inputs, session_id,search_types):
|
|
49 |
url = host+path
|
50 |
r = requests.get(url, auth=awsauth, json=query_mm, headers=headers)
|
51 |
response_mm = json.loads(r.text)
|
52 |
-
# response_mm = ospy_client.search(
|
53 |
-
# body = query_mm,
|
54 |
-
# index = st.session_state.input_index+"_mm"
|
55 |
-
# )
|
56 |
-
|
57 |
-
|
58 |
|
59 |
hits = response_mm['hits']['hits']
|
60 |
context = []
|
@@ -72,6 +66,24 @@ def query_(awsauth,inputs, session_id,search_types):
|
|
72 |
|
73 |
searches = ['Keyword','Vector','NeuralSparse']
|
74 |
equal_weight = (int(100/num_queries) )/100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
if(num_queries>1):
|
76 |
for index,search in enumerate(search_types):
|
77 |
|
@@ -81,31 +93,25 @@ def query_(awsauth,inputs, session_id,search_types):
|
|
81 |
weight = 1-sum(weights)
|
82 |
|
83 |
weights.append(weight)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
},
|
97 |
-
"combination": {
|
98 |
-
"technique": "arithmetic_mean",
|
99 |
-
"parameters": {
|
100 |
-
"weights": weights
|
101 |
}
|
102 |
}
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
r = requests.put(url, auth=awsauth, json=s_pipeline_payload, headers=headers)
|
109 |
|
110 |
SIZE = 5
|
111 |
|
@@ -183,8 +189,10 @@ def query_(awsauth,inputs, session_id,search_types):
|
|
183 |
# query_sparse = sparse_["inference_results"][0]["output"][0]["dataAsMap"]["response"][0]
|
184 |
|
185 |
hits = []
|
186 |
-
if(num_queries>1):
|
187 |
-
|
|
|
|
|
188 |
else:
|
189 |
path = st.session_state.input_index+"/_search"
|
190 |
url = host+path
|
|
|
49 |
url = host+path
|
50 |
r = requests.get(url, auth=awsauth, json=query_mm, headers=headers)
|
51 |
response_mm = json.loads(r.text)
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
hits = response_mm['hits']['hits']
|
54 |
context = []
|
|
|
66 |
|
67 |
searches = ['Keyword','Vector','NeuralSparse']
|
68 |
equal_weight = (int(100/num_queries) )/100
|
69 |
+
s_pipeline_payload = {}
|
70 |
+
s_pipeline_path = "_search/pipeline/rag-search-pipeline"
|
71 |
+
if(st.session_state.input_is_rerank):
|
72 |
+
s_pipeline_payload["response_processors"] = [
|
73 |
+
{
|
74 |
+
"rerank": {
|
75 |
+
"ml_opensearch": {
|
76 |
+
"model_id": "eUoo-ZMBTp0efWqBQ-5g"
|
77 |
+
},
|
78 |
+
"context": {
|
79 |
+
"document_fields": [
|
80 |
+
"processed_element"
|
81 |
+
]
|
82 |
+
}
|
83 |
+
}
|
84 |
+
}
|
85 |
+
]
|
86 |
+
|
87 |
if(num_queries>1):
|
88 |
for index,search in enumerate(search_types):
|
89 |
|
|
|
93 |
weight = 1-sum(weights)
|
94 |
|
95 |
weights.append(weight)
|
96 |
+
s_pipeline_payload["phase_results_processors"] = [
|
97 |
+
{
|
98 |
+
"normalization-processor": {
|
99 |
+
"normalization": {
|
100 |
+
"technique": "min_max"
|
101 |
+
},
|
102 |
+
"combination": {
|
103 |
+
"technique": "arithmetic_mean",
|
104 |
+
"parameters": {
|
105 |
+
"weights": weights
|
106 |
+
}
|
107 |
+
}
|
|
|
|
|
|
|
|
|
|
|
108 |
}
|
109 |
}
|
110 |
+
]
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
|
|
115 |
|
116 |
SIZE = 5
|
117 |
|
|
|
189 |
# query_sparse = sparse_["inference_results"][0]["output"][0]["dataAsMap"]["response"][0]
|
190 |
|
191 |
hits = []
|
192 |
+
if(num_queries>1 or st.session_state.input_is_rerank):
|
193 |
+
s_pipeline_url = host + s_pipeline_path
|
194 |
+
r = requests.put(s_pipeline_url, auth=awsauth, json=s_pipeline_payload, headers=headers)
|
195 |
+
path = st.session_state.input_index+"/_search?search_pipeline=rag-search-pipeline"
|
196 |
else:
|
197 |
path = st.session_state.input_index+"/_search"
|
198 |
url = host+path
|