# Streamlit app: Chat with PDFs using OpenSearch, RAG, and ColPali import streamlit as st import uuid import os import sys import warnings import boto3 import json import random import string import pandas as pd from PIL import Image from requests.auth import HTTPBasicAuth # Suppress Streamlit deprecation warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # Add necessary module paths base_path = "/".join(os.path.realpath(__file__).split("/")[:-2]) sys.path.insert(1, f"{base_path}/semantic_search") sys.path.insert(1, f"{base_path}/RAG") sys.path.insert(1, f"{base_path}/utilities") # Local modules import rag_DocumentLoader import rag_DocumentSearcher import colpali # AWS & OpenSearch setup region = 'us-east-1' s3_bucket_ = "pdf-repo-uploads" bedrock_runtime_client = boto3.client('bedrock-runtime', region_name=region) polly_client = boto3.client( 'polly', aws_access_key_id=st.secrets['user_access_key'], aws_secret_access_key=st.secrets['user_secret_key'], region_name=region ) credentials = boto3.Session().get_credentials() awsauth = HTTPBasicAuth('master', st.secrets['ml_search_demo_api_access']) # App configuration st.set_page_config(layout="wide", page_icon="images/opensearch_mark_default.png") parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[:-1]) USER_ICON = "images/user.png" AI_ICON = "images/opensearch-twitter-card.png" REGENERATE_ICON = "images/regenerate.png" # Session state setup if 'user_id' not in st.session_state: st.session_state['user_id'] = str(uuid.uuid4()) st.session_state.setdefault('session_id', "") st.session_state.setdefault('chats', [{'id': 0, 'question': '', 'answer': ''}]) st.session_state.setdefault('questions_', []) st.session_state.setdefault('answers_', []) st.session_state.setdefault('show_columns', False) st.session_state.setdefault('input_index', "hpijan2024hometrack") st.session_state.setdefault('input_is_rerank', True) st.session_state.setdefault('input_is_colpali', False) st.session_state.setdefault('input_copali_rerank', False) st.session_state.setdefault('input_table_with_sql', False) st.session_state.setdefault('input_query', "which city has the highest average housing price in UK ?") st.session_state.setdefault('input_rag_searchType', ["Vector Search"]) # Custom styling st.markdown(""" """, unsafe_allow_html=True) # Top bar with app logo and clear button def write_top_bar(): col1, col2 = st.columns([77, 23]) with col1: st.header("Chat with your data", divider='rainbow') with col2: clear = st.button("Clear") st.write("") # spacing return clear # Reset inputs when Clear is clicked if write_top_bar(): st.session_state.questions_ = [] st.session_state.answers_ = [] st.session_state.input_query = "" # Handle user query submission def handle_input(): if st.session_state.input_query == '': return # Extract all input values from session state inputs = {key.removeprefix('input_'): st.session_state[key] for key in st.session_state if key.startswith('input_')} st.session_state.inputs_ = inputs # Save the question st.session_state.questions_.append({ 'question': inputs["query"], 'id': len(st.session_state.questions_) }) # Choose retrieval method if st.session_state.input_is_colpali: out_ = colpali.colpali_search_rerank(st.session_state.input_query) else: out_ = rag_DocumentSearcher.query_( awsauth, inputs, st.session_state['session_id'], st.session_state.input_rag_searchType ) # Save the answer and clear input st.session_state.answers_.append({ 'answer': out_['text'], 'source': out_['source'], 'id': len(st.session_state.questions_), 'image': out_['image'], 'table': out_['table'] }) st.session_state.input_query = "" # Display user message block def write_user_message(msg): col1, col2 = st.columns([3, 97]) with col1: st.image(USER_ICON, use_container_width=True) with col2: st.markdown( f"
{msg['question']}
", unsafe_allow_html=True ) # Render assistant answer block with optional images and tables def write_chat_message(response, question, index): col1, col2, col3 = st.columns([4, 74, 22]) with col1: st.image(AI_ICON, use_container_width=True) with col2: answer_text = response['answer'] st.write(answer_text) # Add voice playback using AWS Polly polly_response = polly_client.synthesize_speech( VoiceId='Joanna', OutputFormat='ogg_vorbis', Text=answer_text, Engine='neural') st.audio(polly_response['AudioStream'].read(), format="audio/ogg") # Optionally show similarity map if enabled if st.session_state.input_is_colpali: if st.button("Show similarity map", key=f"simmap_{index}"): st.session_state.show_columns = True st.session_state.maxSimImages = colpali.img_highlight( st.session_state.top_img, st.session_state.query_token_vectors, st.session_state.query_tokens ) handle_input() with placeholder.container(): render_all() with st.expander("Relevant Sources"): # Render related images for img in response.get('image', []): if isinstance(img, dict) and 'file' in img: st.image(img['file']) # Render related tables for tbl in response.get('table', []): try: df = pd.read_csv(tbl['name'], skipinitialspace=True, on_bad_lines='skip', delimiter='`') df.fillna(method='pad', inplace=True) st.table(df) except Exception as e: st.warning(f"Failed to load table: {e}") # Show source text st.write(response.get("source", "")) # Render all Q&A pairs def render_all(): for index, (q, a) in enumerate(zip(st.session_state.questions_, st.session_state.answers_), start=1): write_user_message(q) write_chat_message(a, q, index) # Placeholder for dynamic rendering placeholder = st.empty() with placeholder.container(): render_all() # Input field for user question col_2, col_3 = st.columns([75, 20]) with col_2: st.text_input("Ask here", label_visibility="collapsed", key="input_query") with col_3: st.button("GO", on_click=handle_input, key="play") # Sidebar configuration with st.sidebar: st.page_link("app.py", label=":orange[Home]", icon="🏠") st.subheader(":blue[Sample Data]") st.radio("Choose one index", ["UK Housing", "Global Warming stats", "Covid19 impacts on Ireland"], key="input_rad_index") st.subheader(":blue[Retriever]") st.multiselect("Select the Retriever(s)", ["Keyword Search", "Vector Search", "Sparse Search"], default=["Vector Search"], key="input_rag_searchType") st.checkbox("Re-rank results", key="input_is_rerank", value=True) st.subheader(":blue[Multi-vector retrieval]") st.checkbox("Try Colpali multi-vector retrieval", key="input_is_colpali")