# Streamlit app: Chat with PDFs using OpenSearch, RAG, and ColPali import streamlit as st import uuid import os import sys import warnings import boto3 import json import random import string import pandas as pd from PIL import Image from requests.auth import HTTPBasicAuth # Suppress Streamlit deprecation warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # Add necessary module paths base_path = "/".join(os.path.realpath(__file__).split("/")[:-2]) sys.path.insert(1, f"{base_path}/semantic_search") sys.path.insert(1, f"{base_path}/RAG") sys.path.insert(1, f"{base_path}/utilities") # Local modules import rag_DocumentLoader import rag_DocumentSearcher import colpali # AWS & OpenSearch setup region = 'us-east-1' s3_bucket_ = "pdf-repo-uploads" bedrock_runtime_client = boto3.client('bedrock-runtime', region_name=region) polly_client = boto3.client( 'polly', aws_access_key_id=st.secrets['user_access_key'], aws_secret_access_key=st.secrets['user_secret_key'], region_name=region ) credentials = boto3.Session().get_credentials() awsauth = HTTPBasicAuth('master', st.secrets['ml_search_demo_api_access']) # App configuration st.set_page_config(layout="wide", page_icon="images/opensearch_mark_default.png") parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[:-1]) USER_ICON = "images/user.png" AI_ICON = "images/opensearch-twitter-card.png" REGENERATE_ICON = "images/regenerate.png" # Session state setup if 'user_id' not in st.session_state: st.session_state['user_id'] = str(uuid.uuid4()) st.session_state.setdefault('session_id', "") st.session_state.setdefault('chats', [{'id': 0, 'question': '', 'answer': ''}]) st.session_state.setdefault('questions_', []) st.session_state.setdefault('answers_', []) st.session_state.setdefault('show_columns', False) st.session_state.setdefault('input_index', "hpijan2024hometrack") st.session_state.setdefault('input_is_rerank', True) st.session_state.setdefault('input_is_colpali', False) st.session_state.setdefault('input_copali_rerank', False) st.session_state.setdefault('input_table_with_sql', False) st.session_state.setdefault('input_query', "which city has the highest average housing price in UK ?") st.session_state.setdefault('input_rag_searchType', ["Vector Search"]) # Custom styling st.markdown(""" """, unsafe_allow_html=True) # Top bar with app logo and clear button def write_top_bar(): col1, col2 = st.columns([77, 23]) with col1: st.header("Chat with your data", divider='rainbow') with col2: clear = st.button("Clear") st.write("") # spacing return clear # Reset inputs when Clear is clicked if write_top_bar(): st.session_state.questions_ = [] st.session_state.answers_ = [] st.session_state.input_query = "" # Handle user query submission def handle_input(): if st.session_state.input_query == '': return inputs = {key.removeprefix('input_'): st.session_state[key] for key in st.session_state if key.startswith('input_')} st.session_state.inputs_ = inputs st.session_state.questions_.append({ 'question': inputs["query"], 'id': len(st.session_state.questions_) }) if st.session_state.input_is_colpali: out_ = colpali.colpali_search_rerank(st.session_state.input_query) else: out_ = rag_DocumentSearcher.query_( awsauth, inputs, st.session_state['session_id'], st.session_state.input_rag_searchType ) st.session_state.answers_.append({ 'answer': out_['text'], 'source': out_['source'], 'id': len(st.session_state.questions_), 'image': out_['image'], 'table': out_['table'] }) st.session_state.input_query = "" # Display user message block def write_user_message(msg): col1, col2 = st.columns([3, 97]) with col1: st.image(USER_ICON, use_container_width=True) with col2: st.markdown( f"
{msg['question']}
", unsafe_allow_html=True ) # Render assistant answer block with optional images and tables def write_chat_message(response, question, index): col1, col2, col3 = st.columns([4, 74, 22]) with col1: st.image(AI_ICON, use_container_width=True) with col2: answer_text = response['answer'] st.write(answer_text) polly_response = polly_client.synthesize_speech( VoiceId='Joanna', OutputFormat='ogg_vorbis', Text=answer_text, Engine='neural') st.audio(polly_response['AudioStream'].read(), format="audio/ogg") if st.session_state.input_is_colpali: if st.button("Show similarity map", key=f"simmap_{index}"): st.session_state.show_columns = True st.session_state.maxSimImages = colpali.img_highlight( st.session_state.top_img, st.session_state.query_token_vectors, st.session_state.query_tokens ) handle_input() with placeholder.container(): render_all() with st.expander("Relevant Sources"): for img in response.get('image', []): if isinstance(img, dict) and 'file' in img: st.image(img['file']) for tbl in response.get('table', []): try: df = pd.read_csv(tbl['name'], skipinitialspace=True, on_bad_lines='skip', delimiter='`') df.fillna(method='pad', inplace=True) st.table(df) except Exception as e: st.warning(f"Failed to load table: {e}") st.write(response.get("source", "")) # Render all Q&A pairs def render_all(): for index, (q, a) in enumerate(zip(st.session_state.questions_, st.session_state.answers_), start=1): write_user_message(q) write_chat_message(a, q, index) # Placeholder for dynamic rendering placeholder = st.empty() with placeholder.container(): render_all() # Input field for user question col_2, col_3 = st.columns([75, 20]) with col_2: st.text_input("Ask here", label_visibility="collapsed", key="input_query") with col_3: st.button("GO", on_click=handle_input, key="play") # Sidebar configuration with st.sidebar: st.page_link("app.py", label=":orange[Home]", icon="🏠") st.subheader(":blue[Sample Data]") coln_1, coln_2 = st.columns([70, 30]) with coln_1: st.radio("Choose one index", ["UK Housing", "Global Warming stats", "Covid19 impacts on Ireland"], key="input_rad_index") with coln_2: st.markdown("

Preview file

", unsafe_allow_html=True) st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)") st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)") st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)") st.subheader(":blue[Retriever]") st.multiselect("Select the Retriever(s)", ["Keyword Search", "Vector Search", "Sparse Search"], default=["Vector Search"], key="input_rag_searchType") st.checkbox("Re-rank results", key="input_is_rerank", value=True) st.subheader(":blue[Multi-vector retrieval]") colpali_search_rerank = st.checkbox('Try Colpali multi-vector retrieval on the [sample dataset](https://huggingface.co/datasets/vespa-engine/gpfg-QA)', key='input_colpali', disabled=False, value=False, help="Checking this box will use colpali as the embedding model and retrieval is performed using multi-vectors followed by re-ranking using MaxSim") if colpali_search_rerank: st.session_state.input_is_colpali = True else: st.session_state.input_is_colpali = False with st.expander("Sample questions for Colpali retriever:"): st.write(""" 1. Proportion of female new hires 2021-2023? 2. First-half 2021 return on unlisted real estate investments? 3. Trend of the fund's expected absolute volatility between January 2014 and January 2016? 4. Fund return percentage in 2017? 5. Annualized gross return of the fund from 1997 to 2008? """)