import streamlit as st import uuid import os import re import sys sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search") sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG") sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities") import boto3 import requests from boto3 import Session import botocore.session import json import random import string #import rag_DocumentLoader import rag_DocumentSearcher import pandas as pd from PIL import Image import shutil import base64 import time import botocore from requests_aws4auth import AWS4Auth import colpali from requests.auth import HTTPBasicAuth import warnings from streamlit import experimental_fragment warnings.filterwarnings("ignore", category=DeprecationWarning) st.set_page_config( #page_title="Semantic Search using OpenSearch", layout="wide", page_icon="images/opensearch_mark_default.png" ) parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1]) USER_ICON = "images/user.png" AI_ICON = "images/opensearch-twitter-card.png" REGENERATE_ICON = "images/regenerate.png" s3_bucket_ = "pdf-repo-uploads" #"pdf-repo-uploads" polly_client = boto3.client('polly',aws_access_key_id=st.secrets['user_access_key'], aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') # Check if the user ID is already stored in the session state if 'user_id' in st.session_state: user_id = st.session_state['user_id'] #print(f"User ID: {user_id}") # If the user ID is not yet stored in the session state, generate a random UUID else: user_id = str(uuid.uuid4()) st.session_state['user_id'] = user_id if 'session_id' not in st.session_state: st.session_state['session_id'] = "" if "chats" not in st.session_state: st.session_state.chats = [ { 'id': 0, 'question': '', 'answer': '' } ] if "questions_" not in st.session_state: st.session_state.questions_ = [] if "show_columns" not in st.session_state: st.session_state.show_columns = False if "answers_" not in st.session_state: st.session_state.answers_ = [] if "input_index" not in st.session_state: st.session_state.input_index = "globalwarming"#"hpijan2024hometrack"#"#"hpijan2024hometrack_no_img_no_table" if "input_is_rerank" not in st.session_state: st.session_state.input_is_rerank = True if "input_is_colpali" not in st.session_state: st.session_state.input_is_colpali = False if "input_copali_rerank" not in st.session_state: st.session_state.input_copali_rerank = False if "input_table_with_sql" not in st.session_state: st.session_state.input_table_with_sql = False if "input_query" not in st.session_state: st.session_state.input_query="What is the projected energy percentage from renewable sources in future?"#"which city has the highest average housing price in UK ?"#"Which city in United Kingdom has the highest average housing price ?"#"How many aged above 85 years died due to covid ?"# What is the projected energy from renewable sources ?" if "input_rag_searchType" not in st.session_state: st.session_state.input_rag_searchType = ["Vector Search"] region = 'us-east-1' bedrock_runtime_client = boto3.client('bedrock-runtime',region_name=region) output = [] service = 'es' st.markdown(""" """,unsafe_allow_html=True) credentials = boto3.Session().get_credentials() awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access']) service = 'es' def write_logo(): col1, col2, col3 = st.columns([5, 1, 5]) with col2: st.image(AI_ICON, use_column_width='always') def write_top_bar(): col1, col2 = st.columns([77,23]) with col1: st.write("") st.header("Chat with your data",divider='rainbow') #st.image(AI_ICON, use_column_width='always') with col2: st.write("") st.write("") clear = st.button("Clear") st.write("") st.write("") return clear clear = write_top_bar() if clear: st.session_state.questions_ = [] st.session_state.answers_ = [] st.session_state.input_query="" def handle_input(): print("Question: "+st.session_state.input_query) print("-----------") print("\n\n") if(st.session_state.input_query==''): return "" inputs = {} for key in st.session_state: if key.startswith('input_'): inputs[key.removeprefix('input_')] = st.session_state[key] st.session_state.inputs_ = inputs question_with_id = { 'question': inputs["query"], 'id': len(st.session_state.questions_) } st.session_state.questions_.append(question_with_id) if(st.session_state.input_is_colpali): out_ = colpali.colpali_search_rerank(st.session_state.input_query) else: out_ = rag_DocumentSearcher.query_(awsauth, inputs, st.session_state['session_id'],st.session_state.input_rag_searchType) st.session_state.answers_.append({ 'answer': out_['text'], 'source':out_['source'], 'id': len(st.session_state.questions_), 'image': out_['image'], 'table':out_['table'] }) st.session_state.input_query="" # search_type = st.selectbox('Select the Search type', # ('Conversational Search (RAG)', # 'OpenSearch vector search', # 'LLM Text Generation' # ), # key = 'input_searchType', # help = "Select the type of retriever\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers_)" # ) # col1, col2, col3, col4 = st.columns(4) # with col1: # st.text_input('Temperature', value = "0.001", placeholder='LLM Temperature', key = 'input_temperature',help = "Set the temperature of the Large Language model. \n Note: 1. Set this to values lower to 1 in the order of 0.001, 0.0001, such low values reduces hallucination and creativity in the LLM response; 2. This applies only when LLM is a part of the retriever pipeline") # with col2: # st.number_input('Top K', value = 200, placeholder='Top K', key = 'input_topK', step = 50, help = "This limits the LLM's predictions to the top k most probable tokens at each step of generation, this applies only when LLM is a prt of the retriever pipeline") # with col3: # st.number_input('Top P', value = 0.95, placeholder='Top P', key = 'input_topP', step = 0.05, help = "This sets a threshold probability and selects the top tokens whose cumulative probability exceeds the threshold while the tokens are generated by the LLM") # with col4: # st.number_input('Max Output Tokens', value = 500, placeholder='Max Output Tokens', key = 'input_maxTokens', step = 100, help = "This decides the total number of tokens generated as the final response. Note: Values greater than 1000 takes longer response time") # st.markdown('---') def write_user_message(md): col1, col2 = st.columns([3,97]) with col1: st.image(USER_ICON, use_column_width='always') with col2: #st.warning(md['question']) st.markdown("
Preview file
",unsafe_allow_html=True) st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)") st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)") st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)") st.markdown(""" """,unsafe_allow_html=True) with st.expander("Sample questions:"): st.markdown("Global Warming stats - What is the projected energy percentage from renewable sources in future?",unsafe_allow_html=True) st.markdown("UK Housing - which city has the highest average housing price in UK ?",unsafe_allow_html=True) st.markdown("Covid19 impacts - How many aged above 85 years died due to covid ?",unsafe_allow_html=True) #st.subheader(":blue[Your multi-modal documents]") # pdf_doc_ = st.file_uploader( # "Upload your PDFs here and click on 'Process'", accept_multiple_files=False) # pdf_docs = [pdf_doc_] # if st.button("Process"): # with st.spinner("Processing"): # if os.path.isdir(parent_dirname+"/pdfs") == False: # os.mkdir(parent_dirname+"/pdfs") # for pdf_doc in pdf_docs: # print(type(pdf_doc)) # pdf_doc_name = (pdf_doc.name).replace(" ","_") # with open(os.path.join(parent_dirname+"/pdfs",pdf_doc_name),"wb") as f: # f.write(pdf_doc.getbuffer()) # request_ = { "bucket": s3_bucket_,"key": pdf_doc_name} # # if(st.session_state.input_copali_rerank): # # copali.process_doc(request_) # # else: # rag_DocumentLoader.load_docs(request_) # print('lambda done') # st.success('you can start searching on your PDF') ############## haystach demo temporary addition ############ # st.subheader(":blue[Multimodality]") # colu1,colu2 = st.columns([50,50]) # with colu1: # in_images = st.toggle('Images', key = 'in_images', disabled = False) # with colu2: # in_tables = st.toggle('Tables', key = 'in_tables', disabled = False) # if(in_tables): # st.session_state.input_table_with_sql = True # else: # st.session_state.input_table_with_sql = False ############## haystach demo temporary addition ############ #if(pdf_doc_ is None or pdf_doc_ == ""): if(index_select == "Global Warming stats"): st.session_state.input_index = "globalwarming" if(index_select == "Covid19 impacts on Ireland"): st.session_state.input_index = "covid19ie"#"choosetheknnalgorithmforyourbillionscaleusecasewithopensearchawsbigdatablog" if(index_select == "BEIR"): st.session_state.input_index = "2104" if(index_select == "UK Housing"): st.session_state.input_index = "hpijan2024hometrack" # custom_index = st.text_input("If uploaded the file already, enter the original file name", value = "") # if(custom_index!=""): # st.session_state.input_index = re.sub('[^A-Za-z0-9]+', '', (custom_index.lower().replace(".pdf","").split("/")[-1].split(".")[0]).lower()) st.subheader(":blue[Retriever]") search_type = st.multiselect('Select the Retriever(s)', ['Keyword Search', 'Vector Search', 'Sparse Search', ], ['Vector Search'], key = 'input_rag_searchType', help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)" ) re_rank = st.checkbox('Re-rank results', key = 'input_re_rank', disabled = False, value = True, help = "Checking this box will re-rank the results using a cross-encoder model") if(re_rank): st.session_state.input_is_rerank = True else: st.session_state.input_is_rerank = False st.subheader(":blue[Multi-vector retrieval]") colpali_search_rerank = st.checkbox('Try Colpali multi-vector retrieval on the [sample dataset](https://huggingface.co/datasets/vespa-engine/gpfg-QA)', key = 'input_colpali', disabled = False, value = False, help = "Checking this box will use colpali as the embedding model and retrieval is performed using multi-vectors followed by re-ranking using MaxSim") if(colpali_search_rerank): st.session_state.input_is_colpali = True #st.session_state.input_query = "" else: st.session_state.input_is_colpali = False with st.expander("Sample questions for Colpali retriever:"): st.write("1. Proportion of female new hires 2021-2023? \n\n 2. First-half 2021 return on unlisted real estate investments? \n\n 3. Trend of the fund's expected absolute volatility between January 2014 and January 2016? \n\n 4. Fund return percentage in 2017? \n\n 5. Annualized gross return of the fund from 1997 to 2008?") sidebar_controls()