import streamlit as st import math import io import uuid import os import sys import boto3 import requests from requests_aws4auth import AWS4Auth sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search") sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG") sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities") from boto3 import Session from pathlib import Path import botocore.session import subprocess #import os_index_df_sql import json import random import string from PIL import Image import urllib.request import base64 import shutil import re from requests.auth import HTTPBasicAuth #import utilities.re_ranker as re_ranker # from nltk.stem import PorterStemmer # from nltk.tokenize import word_tokenize import query_rewrite import amazon_rekognition #from st_click_detector import click_detector import llm_eval import all_search_execute import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) st.set_page_config( #page_title="Semantic Search using OpenSearch", #layout="wide", page_icon="images/opensearch_mark_default.png" ) parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1]) st.markdown(""" """, unsafe_allow_html=True) #ps = PorterStemmer() st.session_state.REGION = 'us-east-1' #from langchain.callbacks.base import BaseCallbackHandler USER_ICON = "images/user.png" AI_ICON = "images/opensearch-twitter-card.png" REGENERATE_ICON = "images/regenerate.png" IMAGE_ICON = "images/Image_Icon.png" TEXT_ICON = "images/text.png" s3_bucket_ = "pdf-repo-uploads" #"pdf-repo-uploads" # Check if the user ID is already stored in the session state if 'user_id' in st.session_state: user_id = st.session_state['user_id'] print(f"User ID: {user_id}") # If the user ID is not yet stored in the session state, generate a random UUID # else: # user_id = str(uuid.uuid4()) # st.session_state['user_id'] = user_id # dynamodb = boto3.resource('dynamodb') # table = dynamodb.Table('ml-search') if 'session_id' not in st.session_state: st.session_state['session_id'] = "" if 'input_reranker' not in st.session_state: st.session_state['input_reranker'] = "None"#"Cross Encoder" if "chats" not in st.session_state: st.session_state.chats = [ { 'id': 0, 'question': '', 'answer': '' } ] if "questions" not in st.session_state: st.session_state.questions = [] if "clear_" not in st.session_state: st.session_state.clear_ = False if "input_clear_filter" not in st.session_state: st.session_state.input_clear_filter = False if "radio_disabled" not in st.session_state: st.session_state.radio_disabled = True if "input_rad_1" not in st.session_state: st.session_state.input_rad_1 = "" if "input_manual_filter" not in st.session_state: st.session_state.input_manual_filter = "" if "input_category" not in st.session_state: st.session_state.input_category = None if "input_gender" not in st.session_state: st.session_state.input_gender = None # if "input_price" not in st.session_state: # st.session_state.input_price = (0,0) if "input_sql_query" not in st.session_state: st.session_state.input_sql_query = "" if "input_rewritten_query" not in st.session_state: st.session_state.input_rewritten_query = "" if "input_hybridType" not in st.session_state: st.session_state.input_hybridType = "OpenSearch Hybrid Query" if "ndcg_increase" not in st.session_state: st.session_state.ndcg_increase = " ~ " if "inputs_" not in st.session_state: st.session_state.inputs_ = {} if "img_container" not in st.session_state: st.session_state.img_container = "" if "input_rekog_directoutput" not in st.session_state: st.session_state.input_rekog_directoutput = {} if "input_weightage" not in st.session_state: st.session_state.input_weightage = {} if "img_gen" not in st.session_state: st.session_state.img_gen = [] if "answers" not in st.session_state: st.session_state.answers = [] if "answers_none_rank" not in st.session_state: st.session_state.answers_none_rank = [] if "input_text" not in st.session_state: st.session_state.input_text="black jacket for men"#"black jacket for men under 120 dollars" if "input_ndcg" not in st.session_state: st.session_state.input_ndcg=0.0 if "gen_image_str" not in st.session_state: st.session_state.gen_image_str="" # if "input_searchType" not in st.session_state: # st.session_state.input_searchType = ['Keyword Search'] # if "input_must" not in st.session_state: # st.session_state.input_must = ["Category","Price","Gender","Style"] if "input_NormType" not in st.session_state: st.session_state.input_NormType = "min_max" if "input_CombineType" not in st.session_state: st.session_state.input_CombineType = "arithmetic_mean" if "input_sparse" not in st.session_state: st.session_state.input_sparse = "disabled" if "input_evaluate" not in st.session_state: st.session_state.input_evaluate = "disabled" if "input_is_rewrite_query" not in st.session_state: st.session_state.input_is_rewrite_query = "disabled" if "input_rekog_label" not in st.session_state: st.session_state.input_rekog_label = "" if "input_sparse_filter" not in st.session_state: st.session_state.input_sparse_filter = 0.5 if "input_modelType" not in st.session_state: st.session_state.input_modelType = "Titan-Embed-Text-v1" if "input_weight" not in st.session_state: st.session_state.input_weight = 0.5 if "image_prompt2" not in st.session_state: st.session_state.image_prompt2 = "" if "image_prompt" not in st.session_state: st.session_state.image_prompt = "" if "bytes_for_rekog" not in st.session_state: st.session_state.bytes_for_rekog = "" if "OpenSearchDomainEndpoint" not in st.session_state: st.session_state.OpenSearchDomainEndpoint = "search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com" if "max_selections" not in st.session_state: st.session_state.max_selections = "None" if "re_ranker" not in st.session_state: st.session_state.re_ranker = "true" host = 'https://'+st.session_state.OpenSearchDomainEndpoint+'/' service = 'es' #credentials = boto3.Session().get_credentials() awsauth = awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access']) headers = {"Content-Type": "application/json"} if "REGION" not in st.session_state: st.session_state.REGION = "" if "BEDROCK_MULTIMODAL_MODEL_ID" not in st.session_state: st.session_state.BEDROCK_MULTIMODAL_MODEL_ID = "p_Qk-ZMBcuw9xT4ly3_B" if "search_types" not in st.session_state: st.session_state.search_types = 'Keyword Search,Vector Search,Multimodal Search,NeuralSparse Search', if "KendraResourcePlanID" not in st.session_state: st.session_state.KendraResourcePlanID= "" if "SAGEMAKER_CrossEncoder_MODEL_ID" not in st.session_state: st.session_state.SAGEMAKER_CrossEncoder_MODEL_ID = "deBS3pYB5VHEj-qVuPHT" if "SAGEMAKER_SPARSE_MODEL_ID" not in st.session_state: st.session_state.SAGEMAKER_SPARSE_MODEL_ID = "fkol-ZMBTp0efWqBcO2P" if "BEDROCK_TEXT_MODEL_ID" not in st.session_state: st.session_state.BEDROCK_TEXT_MODEL_ID = "usQk-ZMBkiQuoz1QFmXN" #bytes_for_rekog = "" bedrock_ = boto3.client('bedrock-runtime', aws_access_key_id=st.secrets['user_access_key'], aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') search_all_type = True if(search_all_type==True): search_types = ['Keyword Search', 'Vector Search', 'Multimodal Search', 'NeuralSparse Search', ] from streamlit.components.v1 import html # with st.container(): # html(""" # # """, width=0, height=0) def generate_images(tab,inp_): #write_top_bar() seed = random.randint(1, 10) request = json.dumps( { "taskType": "TEXT_IMAGE", "textToImageParams": {"text": st.session_state.image_prompt}, "imageGenerationConfig": { "numberOfImages": 3, "quality": "standard", "cfgScale": 8.0, "height": 512, "width": 512, "seed": seed, }, } ) if(inp_!=st.session_state.image_prompt): print("call bedrocck") response = bedrock_.invoke_model( modelId="amazon.titan-image-generator-v1", body=request ) response_body = json.loads(response["body"].read()) st.session_state.img_gen = response_body["images"] gen_images_dir = os.path.join(parent_dirname, "gen_images") if os.path.exists(gen_images_dir): shutil.rmtree(gen_images_dir) os.mkdir(gen_images_dir) width_ = 200 height_ = 200 index_ = 0 #if(inp_!=st.session_state.image_prompt): if(len(st.session_state.img_gen)==0 and st.session_state.clear_ == True): #write_top_bar() placeholder1 = st.empty() with tab: with placeholder1.container(): st.empty() images_dis = [] for image_ in st.session_state.img_gen: st.session_state.radio_disabled = False if(index_==0): # with tab: # rad1, rad2,rad3 = st.columns([98,1,1]) # if(st.session_state.input_rad_1 is None): # rand_ = "" # else: # rand_ = st.session_state.input_rad_1 # if(inp_!=st.session_state.image_prompt+rand_): # with rad1: # sel_rad_1 = st.radio("Choose one image", ["1","2","3"],index=None, horizontal = True,key = 'input_rad_1') with tab: #sel_image = st.radio("", ["1","2","3"],index=None, horizontal = True) if(st.session_state.img_container!=""): st.session_state.img_container.empty() place_ = st.empty() img1, img2,img3 = place_.columns([30,30,30]) st.session_state.img_container = place_ img_arr = [img1, img2,img3] base64_image_data = image_ #st.session_state.gen_image_str = base64_image_data print("perform multimodal search") Image.MAX_IMAGE_PIXELS = 100000000 filename = st.session_state.image_prompt+"_gen_"+str(index_) photo = parent_dirname+"/gen_images/"+filename+'.jpg' # I assume you have a way of picking unique filenames imgdata = base64.b64decode(base64_image_data) with open(photo, 'wb') as f: f.write(imgdata) with Image.open(photo) as image: file_type = 'jpg' path = image.filename.rsplit(".", 1)[0] image.thumbnail((width_, height_)) image.save(parent_dirname+"/gen_images/"+filename+"-resized_display."+file_type) with img_arr[index_]: placeholder_ = st.empty() placeholder_.image(parent_dirname+"/gen_images/"+filename+"-resized_display."+file_type) index_ = index_ + 1 def handle_input(): if("text" in st.session_state.inputs_): if(st.session_state.inputs_["text"] != st.session_state.input_text): st.session_state.input_ndcg=0.0 st.session_state.bytes_for_rekog = "" print("***") if(st.session_state.img_doc is not None or (st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!="") ):#and st.session_state.input_searchType == 'Multi-modal Search'): print("perform multimodal search") st.session_state.input_imageUpload = 'yes' if(st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!=""): num_str = str(int(st.session_state.input_rad_1.strip())-1) with open(parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+"-resized_display.jpg", "rb") as image_file: input_image = base64.b64encode(image_file.read()).decode("utf8") st.session_state.input_image = input_image if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType): st.session_state.bytes_for_rekog = Path(parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+".jpg").read_bytes() else: Image.MAX_IMAGE_PIXELS = 100000000 width = 2048 height = 2048 uploaded_images = os.path.join(parent_dirname, "uploaded_images") if not os.path.exists(uploaded_images): os.mkdir(uploaded_images) with open(os.path.join(parent_dirname+"/uploaded_images",st.session_state.img_doc.name),"wb") as f: f.write(st.session_state.img_doc.getbuffer()) photo = parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name with Image.open(photo) as image: image.verify() with Image.open(photo) as image: width_ = 200 height_ = 200 if image.format.upper() in ["JPEG", "PNG","JPG"]: path = image.filename.rsplit(".", 1)[0] org_file_type = st.session_state.img_doc.name.split(".")[1] image.thumbnail((width, height)) if(org_file_type.upper()=="PNG"): file_type = "jpg" image.convert('RGB').save(f"{path}-resized.{file_type}") else: file_type = org_file_type image.save(f"{path}-resized.{file_type}") image.thumbnail((width_, height_)) image.save(f"{path}-resized_display.{org_file_type}") with open(photo.split(".")[0]+"-resized."+file_type, "rb") as image_file: input_image = base64.b64encode(image_file.read()).decode("utf8") st.session_state.input_image = input_image if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType): st.session_state.bytes_for_rekog = Path(parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name).read_bytes() else: print("no image uploaded") st.session_state.input_imageUpload = 'no' st.session_state.input_image = '' inputs = {} # if(st.session_state.input_imageUpload == 'yes'): # st.session_state.input_searchType = 'Multi-modal Search' # if(st.session_state.input_sparse == 'enabled' or st.session_state.input_is_rewrite_query == 'enabled'): # st.session_state.input_searchType = 'Keyword Search' if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType): old_rekog_label = st.session_state.input_rekog_label st.session_state.input_rekog_label = amazon_rekognition.extract_image_metadata(st.session_state.bytes_for_rekog) if(st.session_state.input_text == ""): st.session_state.input_text = st.session_state.input_rekog_label # if(st.session_state.input_imageUpload == 'yes'): # if(st.session_state.input_searchType!='Multi-modal Search'): # if(st.session_state.input_searchType=='Keyword Search'): # if(st.session_state.input_rekognition != 'enabled'): # st.error('For Keyword Search using images, enable "Enrich metadata for Images" in the left panel',icon = "🚨") # #st.session_state.input_rekognition = 'enabled' # st.switch_page('pages/1_Semantic_Search.py') # #st.stop() # else: # st.error('Please set the search type as "Keyword Search (enabling Enrich metadata for Images) or Multi-modal Search"',icon = "🚨") # #st.session_state.input_searchType='Multi-modal Search' # st.switch_page('pages/1_Semantic_Search.py') # #st.stop() weightage = {} st.session_state.weights_ = [] total_weight = 0.0 counter = 0 num_search = len(st.session_state.input_searchType) any_weight_zero = False for type in st.session_state.input_searchType: key_weight = "input_"+type.split(" ")[0]+"-weight" total_weight = total_weight + st.session_state[key_weight] if(st.session_state[key_weight]==0): any_weight_zero = True print(total_weight) for key in st.session_state: if(key.startswith('input_')): original_key = key.removeprefix('input_') if('weight' not in key): inputs[original_key] = st.session_state[key] else: if(original_key.split("-")[0] + " Search" in st.session_state.input_searchType): counter = counter +1 if(total_weight!=100 or any_weight_zero == True): extra_weight = 100%num_search if(counter == num_search): cal_weight = math.trunc(100/num_search)+extra_weight else: cal_weight = math.trunc(100/num_search) st.session_state[key] = cal_weight weightage[original_key] = cal_weight st.session_state.weights_.append(cal_weight) else: weightage[original_key] = st.session_state[key] st.session_state.weights_.append(st.session_state[key]) else: weightage[original_key] = 0.0 st.session_state[key] = 0.0 inputs['weightage']=weightage st.session_state.input_weightage = weightage print("====================") print(st.session_state.weights_) print(st.session_state.input_weightage ) print("====================") #print("***************************") #print(sum(weights_)) # if(sum(st.session_state.weights_)!=100): # st.warning('The total weight of selected search type(s) should be equal to 100',icon = "🚨") # refresh = st.button("Re-Enter") # if(refresh): # st.switch_page('pages/1_Semantic_Search.py') # st.stop() # #st.session_state.input_rekognition = 'enabled' # st.rerun() st.session_state.inputs_ = inputs #st.write(inputs) question_with_id = { 'question': inputs["text"], 'id': len(st.session_state.questions) } st.session_state.questions = [] st.session_state.questions.append(question_with_id) st.session_state.answers = [] if(st.session_state.input_is_sql_query == 'enabled'): os_index_df_sql.sql_process(st.session_state.input_text) print(st.session_state.input_sql_query) else: st.session_state.input_sql_query = "" if(st.session_state.input_is_rewrite_query == 'enabled' or (st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType)): query_rewrite.get_new_query_res(st.session_state.input_text) print("-------------------") print(st.session_state.input_rewritten_query) print("-------------------") else: st.session_state.input_rewritten_query = "" # elif(st.session_state.input_rekog_label!="" and st.session_state.input_rekognition == 'enabled'): # ans__ = amazon_rekognition.call(st.session_state.input_text,st.session_state.input_rekog_label) # else: ans__ = all_search_execute.handler(inputs, st.session_state['session_id']) st.session_state.answers.append({ 'answer': ans__,#all_search_api.call(json.dumps(inputs), st.session_state['session_id']), 'search_type':inputs['searchType'], 'id': len(st.session_state.questions) }) st.session_state.answers_none_rank = st.session_state.answers if(st.session_state.input_evaluate == "enabled"): llm_eval.eval(st.session_state.questions, st.session_state.answers) #st.session_state.input_text="" #st.session_state.input_searchType=st.session_state.input_searchType def write_top_bar(): # st.markdown(""" # # """,unsafe_allow_html=True) #print("top bar") # st.title(':mag: AI powered OpenSearch') # st.write("") # st.write("") col1, col2,col3,col4 = st.columns([2.5,35,8,7]) with col1: st.image(TEXT_ICON, use_column_width='always') with col2: #st.markdown("") input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_text",placeholder = "Type your query") with col3: play = st.button("Search",on_click=handle_input,key = "play") with col4: clear = st.button("Clear") col5, col6 = st.columns([4.5,95]) with col5: st.image(IMAGE_ICON, use_column_width='always') with col6: with st.expander(':green[Search by using an image]'): tab2, tab1 = st.tabs(["Upload Image","Generate Image by AI"]) with tab1: c1,c2 = st.columns([80,20]) with c1: gen_images=st.text_area("Text2Image:",placeholder = "Enter the text prompt to generate images",height = 68, key = "image_prompt") with c2: st.markdown("
",unsafe_allow_html=True) st.button("Generate",disabled=False,key = "generate",on_click = generate_images, args=(tab1,"default_img")) # image_select = st.select_slider( # "Select a image", # options=["Image 1","Image 2","Image 3"], value = None, disabled = st.session_state.radio_disabled,key = "image_select") image_select = st.radio("Choose one image", ["Image 1","Image 2","Image 3"],index=None, horizontal = True,key = 'image_select',disabled = st.session_state.radio_disabled) st.markdown(""" """,unsafe_allow_html=True) if(st.session_state.image_select is not None and st.session_state.image_select !="" and len(st.session_state.img_gen)!=0): print("image_select") print("------------") print(st.session_state.image_select) st.session_state.input_rad_1 = st.session_state.image_select.split(" ")[1] else: st.session_state.input_rad_1 = "" # rad1, rad2,rad3 = st.columns([33,33,33]) # with rad1: # btn1 = st.button("choose image 1", disabled = st.session_state.radio_disabled) # with rad2: # btn2 = st.button("choose image 2", disabled = st.session_state.radio_disabled) # with rad3: # btn3 = st.button("choose image 3", disabled = st.session_state.radio_disabled) # if(btn1): # st.session_state.input_rad_1 = "1" # if(btn2): # st.session_state.input_rad_1 = "2" # if(btn3): # st.session_state.input_rad_1 = "3" generate_images(tab1,gen_images) with tab2: st.session_state.img_doc = st.file_uploader( "Upload image", accept_multiple_files=False,type = ['png', 'jpg']) return clear,tab1 clear,tab_ = write_top_bar() if clear: print("clear1") st.session_state.questions = [] st.session_state.answers = [] st.session_state.clear_ = True st.session_state.image_prompt2 = "" st.session_state.input_rekog_label = "" st.session_state.radio_disabled = True if(len(st.session_state.img_gen)!=0): st.session_state.img_container.empty() st.session_state.img_gen = [] st.session_state.input_rad_1 = "" # placeholder1 = st.empty() # with placeholder1.container(): # generate_images(tab_,st.session_state.image_prompt) #st.session_state.input_text="" # st.session_state.input_searchType="Conversational Search (RAG)" # st.session_state.input_temperature = "0.001" # st.session_state.input_topK = 200 # st.session_state.input_topP = 0.95 # st.session_state.input_maxTokens = 1024 col1, col3, col4 = st.columns([70,18,12]) with col1: if(st.session_state.max_selections == "" or st.session_state.max_selections == "1"): st.session_state.max_selections = 1 if(st.session_state.max_selections == "None"): st.session_state.max_selections = None search_type = st.multiselect('Select the Search type(s)', search_types,['Keyword Search'], max_selections = st.session_state.max_selections, key = 'input_searchType', help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)" ) with col3: st.number_input("No. of docs", min_value=1, max_value=50, value=5, step=5, key='input_K', help=None) with col4: st.markdown("Set Weights
",unsafe_allow_html=True) with st.expander("Set query Weightage:"): st.number_input("Keyword %", min_value=0, max_value=100, value=100, step=5, key='input_Keyword-weight', help=None) st.number_input("Vector %", min_value=0, max_value=100, value=0, step=5, key='input_Vector-weight', help=None) st.number_input("Multimodal %", min_value=0, max_value=100, value=0, step=5, key='input_Multimodal-weight', help=None) st.number_input("NeuralSparse %", min_value=0, max_value=100, value=0, step=5, key='input_NeuralSparse-weight', help=None) # if(equal_weight): # counter = 0 # num_search = len(st.session_state.input_searchType) # weight_type = ["input_Keyword-weight","input_Vector-weight","input_Multimodal-weight","input_NeuralSparse-weight"] # for type in weight_type: # if(type.split("-")[0].replace("input_","")+ " Search" in st.session_state.input_searchType): # print("ssssssssssss") # counter = counter +1 # extra_weight = 100%num_search # if(counter == num_search): # cal_weight = math.trunc(100/num_search)+extra_weight # else: # cal_weight = math.trunc(100/num_search) # st.session_state[weight_type] = cal_weight # else: # st.session_state[weight_type] = 0 #weight = st.slider('Weight for Vector Search', 0.0, 1.0, 0.5,0.1,key = 'input_weight', help = 'Use this slider to set the weightage for keyword and vector search, higher values of the slider indicate the increased weightage for semantic search.\n\n This applies only when the search type is set to Hybrid Search') # st.selectbox('Select the Normalisation type', # ('min_max', # 'l2' # ), #st.write("---") # key = 'input_NormType', # disabled = True, # help = "Select the type of Normalisation to be applied on the two sets of scores" # ) # st.selectbox('Select the Score Combination type', # ('arithmetic_mean','geometric_mean','harmonic_mean' # ), # key = 'input_CombineType', # disabled = True, # help = "Select the Combination strategy to be used while combining the two scores of the two search queries for every document" # ) #st.markdown('---') #st.header('Select the ML Model for text embedding', divider='rainbow') #st.subheader('Note: The below selection applies only when the Search type is set to Vector or Hybrid Search') if(st.session_state.re_ranker == "true"): st.subheader(':blue[Re-ranking]') reranker = st.selectbox('Choose a Re-Ranker', ('None','Cohere Rerank'#'Kendra Rescore' ), key = 'input_reranker', help = 'Select the Re-Ranker type, select "None" to apply no re-ranking of the results', #on_change = re_ranker.re_rank, args=(st.session_state.questions, st.session_state.answers) ) # st.write("---") # st.subheader('Text Embeddings Model') # model_type = st.selectbox('Select the Text Embeddings Model', # ('Titan-Embed-Text-v1','GPT-J-6B' # ), # key = 'input_modelType', # help = "Select the Text embedding model, this applies only for the vector and hybrid search" # ) #st.markdown('---') #st.markdown('---') def write_user_message(md,ans): #print(ans) ans = ans["answer"][0] col1, col2, col3 = st.columns([3,40,20]) with col1: st.image(USER_ICON, use_column_width='always') with col2: #st.warning(md['question']) st.markdown("'+json.dumps(st.session_state.input_rekog_directoutput)+'
',unsafe_allow_html=True) else: st.markdown("
" ###### stemming and highlighting # ans_text = ans['desc'] # query_text = st.session_state.input_text # ans_text_stemmed = set(stem_(ans_text)) # query_text_stemmed = set(stem_(query_text)) # common = ans_text_stemmed.intersection( query_text_stemmed) # #unique = set(document_1_words).symmetric_difference( ) # desc__stemmed = stem_(desc__) # for word_ in desc__stemmed: # if(word_ in common): for word in desc__: if(re.sub('[^A-Za-z0-9]+', '', word) in res__): final_desc += ""+word+" " else: final_desc += word + " " final_desc += "
" st.markdown(final_desc,unsafe_allow_html = True) else: st.write(ans['desc']) if("sparse" in ans): with st.expander("Expanded document:"): sparse_ = dict(sorted(ans['sparse'].items(), key=lambda item: item[1],reverse=True)) filtered_sparse = dict() for key in sparse_: if(sparse_[key]>=1.0): filtered_sparse[key] = round(sparse_[key], 2) st.write(filtered_sparse) with st.expander("Document Metadata:",expanded = False): # if("rekog" in ans): # div_size = [50,50] # else: # div_size = [99,1] # div1,div2 = st.columns(div_size) # with div1: st.write(":green[default:]") st.json({"category:":ans['category'],"price":str(ans['price']),"gender_affinity":ans['gender_affinity'],"style":ans['style']},expanded = True) #with div2: if("rekog" in ans): st.write(":green[enriched:]") st.json(ans['rekog'],expanded = True) with inner_col_1: if(st.session_state.input_evaluate == "enabled"): with st.container(border = False): if("relevant" in ans.keys()): if(ans['relevant']==True): st.write(":white_check_mark:") else: st.write(":x:") i = i+1 # with col_2: # if(st.session_state.input_evaluate == "enabled"): # st.markdown("