opetrova's picture
Update app.py
22ae380
from huggingface_hub import hf_hub_url, hf_hub_download
import gradio as gr
import numpy as np
import requests
import torch
from torchvision import transforms
from torch.autograd import Variable
from PIL import Image
import warnings
warnings.filterwarnings('ignore')
path_to_model = hf_hub_download(repo_id="opetrova/face-frontalization", filename="generator_v0.pt")
# Download network.py into the current directory
network_url = hf_hub_url(repo_id="opetrova/face-frontalization", filename="network.py")
r = requests.get(network_url, allow_redirects=True)
open('network.py', 'wb').write(r.content)
saved_model = torch.load(path_to_model, map_location=torch.device('cpu'))
def frontalize(image):
# Convert the test image to a [1, 3, 128, 128]-shaped torch tensor
# (as required by the frontalization model)
preprocess = transforms.Compose((transforms.ToPILImage(),
transforms.Resize(size = (128, 128)),
transforms.ToTensor()))
input_tensor = torch.unsqueeze(preprocess(image), 0)
# Use the saved model to generate an output (whose values go between -1 and 1,
# and this will need to get fixed before the output is displayed)
generated_image = saved_model(Variable(input_tensor.type('torch.FloatTensor')))
generated_image = generated_image.detach().squeeze().permute(1, 2, 0).numpy()
generated_image = (generated_image + 1.0) / 2.0
return generated_image
iface = gr.Interface(frontalize, gr.inputs.Image(type="numpy"), "image",
title='Face Frontalization',
description='PyTorch implementation of a supervised GAN (see <a href="https://blog.scaleway.com/gpu-instances-using-deep-learning-to-obtain-frontal-rendering-of-facial-images/">blog post</a>)',
examples=["amos.png", "clarissa.png"],
)
iface.launch()