opetrova commited on
Commit
a428dd1
·
1 Parent(s): 5feac30

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import hf_hub_url, hf_hub_download
2
+
3
+ import gradio as gr
4
+ import numpy as np
5
+ import requests
6
+
7
+ import torch
8
+ from torchvision import transforms
9
+ from torch.autograd import Variable
10
+
11
+ from PIL import Image
12
+
13
+ import warnings
14
+ warnings.filterwarnings('ignore')
15
+
16
+ path_to_model = hf_hub_download(repo_id="opetrova/face-frontalization", filename="generator_v0.pt")
17
+
18
+ # Download network.py into the current directory
19
+ network_url = hf_hub_url(repo_id="opetrova/face-frontalization", filename="network.py")
20
+ r = requests.get(network_url, allow_redirects=True)
21
+ open('network.py', 'wb').write(r.content)
22
+
23
+ saved_model = torch.load(path_to_model, map_location=torch.device('cpu'))
24
+
25
+ def frontalize(image):
26
+
27
+ # Convert the test image to a [1, 3, 128, 128]-shaped torch tensor
28
+ # (as required by the frontalization model)
29
+ preprocess = transforms.Compose((transforms.ToPILImage(),
30
+ transforms.Resize(size = (128, 128)),
31
+ transforms.ToTensor()))
32
+ input_tensor = torch.unsqueeze(preprocess(image), 0)
33
+
34
+ # Use the saved model to generate an output (whose values go between -1 and 1,
35
+ # and this will need to get fixed before the output is displayed)
36
+ generated_image = saved_model(Variable(input_tensor.type('torch.FloatTensor')))
37
+ generated_image = generated_image.detach().squeeze().permute(1, 2, 0).numpy()
38
+ generated_image = (generated_image + 1.0) / 2.0
39
+
40
+ return generated_image
41
+
42
+ iface = gr.Interface(frontalize, gr.inputs.Image(type="numpy"), "image")
43
+ iface.launch()