Spaces:
Running
Running
File size: 13,452 Bytes
c8763bd 4cfc121 c8763bd 699b4cd 0f1bf97 c382b2a 483e3a1 0f1bf97 a894537 0f1bf97 c8763bd aed686e 4bbe7fd c8763bd d262fb3 708b21b c8763bd a894537 dcfabfb 6db5c25 bf397e6 3c37eb3 0f1bf97 0321f62 804d27e cdf41e7 e2e1ee9 a894537 e2e1ee9 dcfabfb a894537 0321f62 a894537 0f1bf97 3c37eb3 0f1bf97 0321f62 0f1bf97 ad86e2e 223c247 0321f62 e2e1ee9 0321f62 e2e1ee9 0f1bf97 06b3632 b1a20c2 efc3d5b d262fb3 c8763bd 0321f62 e2c5bda 0321f62 a894537 cdf41e7 c5c2773 cdf41e7 bc255c5 aa1afc2 223c247 0321f62 bf397e6 0321f62 6203f23 06b3632 5490c7c b3a1bf0 e89d633 a600c79 e89d633 a600c79 e89d633 b3a1bf0 3c37eb3 b9206c8 a894537 0f1bf97 43b85eb e89d633 c8763bd d19e350 8541989 5c9f565 8541989 8e8c463 8541989 a894537 5aba478 0321f62 0f1bf97 0321f62 b3a1bf0 8e8c463 5236273 8e8c463 5aba478 0f1bf97 8e8c463 d19e350 fbbd324 5aba478 8985298 d3abea5 5643bcb 0f1bf97 0321f62 0f1bf97 8e8c463 97058d0 c4dcfe7 699b4cd c4dcfe7 0321f62 c1efc37 97058d0 c1efc37 e2d1670 c1efc37 e2d1670 699b4cd c1efc37 699b4cd c1efc37 b3a1bf0 d19e350 b3a1bf0 8e8c463 c8763bd 8e8c463 c8763bd 8e8c463 5721994 c8763bd 4b40065 c1efc37 a29a8d2 4b40065 aed686e c1efc37 4bbe7fd 4b40065 a29a8d2 4b40065 a29a8d2 4b40065 a29a8d2 4b40065 d19e350 a29a8d2 4b40065 0321f62 4b40065 0321f62 4b40065 0321f62 c1efc37 0321f62 c1efc37 0321f62 c1efc37 0321f62 c1efc37 0321f62 c1efc37 0321f62 c1efc37 0321f62 c1efc37 0321f62 c1efc37 699b4cd c1efc37 699b4cd 0321f62 aed686e 4b40065 c1efc37 4b40065 a29a8d2 d19e350 aed686e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import os
import gradio as gr
import pandas as pd
import plotly.express as px
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.css_html_js import custom_css
from src.assets.text_content import (
TITLE,
INTRODUCTION_TEXT,
ABOUT_TEXT,
EXAMPLE_CONFIG_TEXT,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
)
from src.utils import (
restart_space,
load_dataset_repo,
process_model_name,
process_model_type,
)
HARDWARE_NAMES = ["A100-80GB", "RTX4090-24GB"]
HARDWARES_EMOJIS = ["π₯οΈ", "π»"]
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
ALL_COLUMNS_MAPPING = {
"backend.name": "Backend π",
"backend.torch_dtype": "Dtype π₯",
"optimizations": "Optimizations π οΈ",
"quantization": "Quantization ποΈ",
#
"weight_class": "Class ποΈ",
"model_type": "Type π€",
#
"generate.peak_memory(MB)": "Memory (MB) β¬οΈ",
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
"generate.energy_consumption(tokens/kWh)": "Energy (tokens/kWh) β¬οΈ",
"best_score": "Best Score (%) β¬οΈ",
#
"best_scored_model": "Best Scored LLM π",
}
ALL_COLUMNS_DATATYPES = [
"str",
"str",
"str",
"str",
#
"str",
"str",
#
"number",
"number",
"number",
"str",
#
"markdown",
]
NO_DUPLICATES_COLUMNS = [
"backend.name",
"backend.torch_dtype",
"optimizations",
"quantization",
#
"weight_class",
"model_type",
]
SORTING_COLUMN = ["best_score", "generate.latency(s)", "generate.peak_memory(MB)"]
SORTING_ASCENDING = [False, True, True]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load data
benchmark_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
clusters_df = pd.read_csv("./llm-perf-dataset/Clustered-Open-LLM-Leaderboard.csv")
# merge on model
merged_df = benchmark_df.merge(
clusters_df, left_on="model", right_on="best_scored_model"
)
# transpose energy consumption
merged_df["generate.energy_consumption(tokens/kWh)"] = (
1 / merged_df["generate.energy_consumption(kWh/token)"].fillna(1)
).astype(int)
# fix nan values
merged_df.loc[
merged_df["generate.energy_consumption(tokens/kWh)"] == 1,
"generate.energy_consumption(tokens/kWh)",
] = "N/A"
# add optimizations
merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply(
lambda x: "BetterTransformer" if x else "None"
)
# add quantization scheme
merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply(
lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None")
)
# sort
merged_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True)
# drop duplicates
merged_df.drop_duplicates(subset=NO_DUPLICATES_COLUMNS, inplace=True)
return merged_df
def get_benchmark_table(bench_df):
copy_df = bench_df.copy()
# filter
copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())]
# rename
copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
# transform
copy_df["Type π€"] = copy_df["Type π€"].apply(process_model_type)
copy_df["Best Scored LLM π"] = copy_df["Best Scored LLM π"].apply(
process_model_name
)
# process quantization
copy_df["Best Score (%) β¬οΈ"] = copy_df.apply(
lambda x: f"{x['Best Score (%) β¬οΈ']}**"
if x["Quantization ποΈ"] in ["BnB.4bit", "GPTQ.4bit"]
else x["Best Score (%) β¬οΈ"],
axis=1,
)
return copy_df
def get_benchmark_chart(bench_df):
copy_df = bench_df.copy()
# filter latency bigger than 100s
copy_df = copy_df[copy_df["generate.latency(s)"] <= 100]
# rename model_type
copy_df["model_type"] = copy_df["model_type"].apply(process_model_type)
fig = px.scatter(
copy_df,
y="best_score",
x="generate.latency(s)",
size="generate.peak_memory(MB)",
color="model_type",
custom_data=list(ALL_COLUMNS_MAPPING.keys()),
color_discrete_sequence=px.colors.qualitative.Light24,
)
fig.update_layout(
title={
"text": "Latency vs. Score vs. Memory",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Per 1000 tokens Latency (s)",
yaxis_title="Open LLM Score (%)",
legend_title="LLM Type",
width=1200,
height=600,
)
fig.update_traces(
hovertemplate="<br>".join(
[
f"<b>{ALL_COLUMNS_MAPPING[key]}:</b> %{{customdata[{i}]}}"
for i, key in enumerate(ALL_COLUMNS_MAPPING.keys())
]
)
)
return fig
def filter_query(
text,
backends,
datatypes,
optimizations,
quantization_scheme,
score,
memory,
hardware,
):
raw_df = get_benchmark_df(benchmark=f"Succeeded-1x{hardware}")
filtered_df = raw_df[
raw_df["best_scored_model"].str.lower().str.contains(text.lower())
& raw_df["backend.name"].isin(backends)
& raw_df["backend.torch_dtype"].isin(datatypes)
& (
pd.concat(
[
raw_df["optimizations"].str.contains(optimization)
for optimization in optimizations
],
axis=1,
).any(axis="columns")
if len(optimizations) > 0
else True
)
& (
pd.concat(
[
raw_df["quantization"] == quantization
for quantization in quantization_scheme
],
axis=1,
).any(axis="columns")
if len(quantization_scheme) > 0
else True
)
& (raw_df["best_score"] >= score)
& (raw_df["forward.peak_memory(MB)"] <= memory)
]
filtered_table = get_benchmark_table(filtered_df)
filtered_chart = get_benchmark_chart(filtered_df)
return filtered_table, filtered_chart
# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
# leaderboard title
gr.HTML(TITLE)
# introduction text
gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text")
with gr.Tabs(elem_classes="leaderboard-tabs"):
hardware_placeholders = {}
hardware_tables = {}
hardware_plots = {}
####################### HARDWARE TABS #######################
for i, (hardware, emoji) in enumerate(zip(HARDWARE_NAMES, HARDWARES_EMOJIS)):
# dummy placeholder of the hardware name
hardware_placeholders[hardware] = gr.Textbox(value=hardware, visible=False)
with gr.TabItem(f"{hardware} {emoji}", id=i):
with gr.Tabs(elem_classes="hardware-tabs"):
# placeholder for full dataframe
hardware_df = get_benchmark_df(benchmark=f"Succeeded-1x{hardware}")
with gr.TabItem("Leaderboard π
", id=0):
gr.HTML(
"π Scroll to the right π for additional columns.",
elem_id="descriptive-text",
)
# Original leaderboard table
hardware_tables[hardware] = gr.components.Dataframe(
value=get_benchmark_table(hardware_df),
headers=list(ALL_COLUMNS_MAPPING.values()),
datatype=ALL_COLUMNS_DATATYPES,
elem_id="hardware-table",
# show_label=False,
)
with gr.TabItem("Plot π", id=1):
gr.HTML(
"π Hover over the points π for additional information.",
elem_id="descriptive-text",
)
# Original leaderboard plot
hardware_plots[hardware] = gr.components.Plot(
value=get_benchmark_chart(hardware_df),
elem_id="hardware-plot",
show_label=False,
)
####################### CONTROL PANEL #######################
with gr.TabItem("Control Panel ποΈ", id=2):
gr.HTML(
"Use this control panel to filter the leaderboard's table and plot.", # noqa: E501
elem_id="descriptive-text",
)
with gr.Row():
with gr.Column():
search_bar = gr.Textbox(
label="Model π€",
info="π Search for a model name",
elem_id="search-bar",
)
with gr.Row():
with gr.Column(scale=1):
with gr.Box():
score_slider = gr.Slider(
label="Open LLM Score π",
info="ποΈ Slide to minimum Open LLM score",
value=0,
elem_id="threshold-slider",
)
with gr.Column(scale=1):
with gr.Box():
memory_slider = gr.Slider(
label="Peak Memory (MB) π",
info="ποΈ Slide to maximum Peak Memory",
minimum=0,
maximum=80 * 1024,
value=80 * 1024,
elem_id="memory-slider",
)
with gr.Column(scale=1):
backend_checkboxes = gr.CheckboxGroup(
label="Backends π",
choices=["pytorch", "onnxruntime"],
value=["pytorch", "onnxruntime"],
info="βοΈ Select the backends",
elem_id="backend-checkboxes",
)
with gr.Row():
with gr.Column(scale=1):
datatype_checkboxes = gr.CheckboxGroup(
label="Load Dtypes π₯",
choices=["float32", "float16"],
value=["float32", "float16"],
info="βοΈ Select the load dtypes",
elem_id="dtype-checkboxes",
)
with gr.Column(scale=1):
optimizations_checkboxes = gr.CheckboxGroup(
label="Optimizations π οΈ",
choices=["None", "BetterTransformer"],
value=["None", "BetterTransformer"],
info="βοΈ Select the optimizations",
elem_id="optimizations-checkboxes",
)
with gr.Column(scale=1):
quantization_checkboxes = gr.CheckboxGroup(
label="Quantizations ποΈ",
choices=["None", "BnB.4bit", "GPTQ.4bit"],
value=["None", "BnB.4bit", "GPTQ.4bit"],
info="βοΈ Select the quantization schemes",
elem_id="quantization-checkboxes",
)
with gr.Row():
filter_button = gr.Button(
value="Filter π",
elem_id="filter-button",
)
for hardware in HARDWARE_NAMES:
filter_button.click(
filter_query,
[
search_bar,
backend_checkboxes,
datatype_checkboxes,
optimizations_checkboxes,
quantization_checkboxes,
score_slider,
memory_slider,
hardware_placeholders[hardware],
],
[hardware_tables[hardware], hardware_plots[hardware]],
)
####################### ABOUT TAB #######################
with gr.TabItem("About π", id=3):
gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text")
gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text")
####################### CITATION #######################
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space,
"interval",
seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN],
)
scheduler.start()
# Launch demo
demo.queue(concurrency_count=10).launch()
|