File size: 7,444 Bytes
c8763bd
0eea6c1
c8763bd
 
 
 
9dc4521
d262fb3
0eea6c1
c8763bd
 
 
d262fb3
708b21b
c8763bd
dcfabfb
 
 
e02ef37
930b7c1
dcfabfb
 
930b7c1
6640b32
efc3d5b
 
d262fb3
c8763bd
 
a18f8de
e2c5bda
 
 
efc3d5b
930b7c1
00642fb
930b7c1
 
 
 
 
 
efc3d5b
930b7c1
af2159b
 
 
efc3d5b
930b7c1
efc3d5b
930b7c1
efc3d5b
930b7c1
c8763bd
930b7c1
c8763bd
 
0eea6c1
 
 
 
 
 
 
 
 
 
 
 
 
 
b075f8f
d2ef1d3
 
 
 
 
f208a6d
d2ef1d3
 
 
 
 
 
f208a6d
d2ef1d3
02f02af
0830b0b
8e785e9
 
d262fb3
c8763bd
 
 
 
 
8e785e9
f208a6d
 
 
 
 
4e5004d
 
af2159b
4e5004d
 
 
 
 
 
 
 
 
 
 
02f02af
 
f208a6d
 
 
 
 
 
02f02af
b075f8f
 
 
 
 
 
8e785e9
c8763bd
708b21b
 
 
a0b186b
 
 
708b21b
 
 
a18f8de
708b21b
8e785e9
 
708b21b
a18f8de
708b21b
 
a18f8de
8e785e9
 
 
 
 
 
 
 
a18f8de
b075f8f
8e785e9
 
 
 
35b1013
8e785e9
 
 
 
 
 
 
 
 
 
 
e985813
8e785e9
 
 
 
 
53e3aab
35b1013
b075f8f
 
 
 
708b21b
9dc4521
00642fb
 
 
 
 
 
d262fb3
0eea6c1
 
 
 
 
 
 
 
d262fb3
c8763bd
5aacd58
 
c8763bd
d262fb3
 
c8763bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import json
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler

from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
from src.utils import restart_space, load_dataset_repo, make_clickable_model
from src.assets.css_html_js import custom_css, get_window_url_params


LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)

COLUMNS_MAPPING = {
    "model": "Model πŸ€—",
    "backend.name": "Backend 🏭",
    "backend.torch_dtype": "Datatype πŸ“₯",
    "average": "Average H4 Score ⬆️",
    "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
}
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number", "number"]
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]


llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)


def get_benchmark_df(benchmark):
    if llm_perf_dataset_repo:
        llm_perf_dataset_repo.git_pull()

    # load
    bench_df = pd.read_csv(
        f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv")
    scores_df = pd.read_csv(
        f"./llm-perf-dataset/reports/average_scores.csv")
    # merge on model
    bench_df = bench_df.merge(
        scores_df, how="left", left_on="model", right_on="model")

    # preprocess
    bench_df["model"] = bench_df["model"].apply(make_clickable_model)
    # set none datatype to float32
    bench_df["backend.torch_dtype"] = bench_df["backend.torch_dtype"].fillna(
        "float32")
    # filter
    bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
    # rename
    bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
    # sort
    bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)

    return bench_df


def change_tab(query_param):
    query_param = query_param.replace("'", '"')
    query_param = json.loads(query_param)

    if (
        isinstance(query_param, dict)
        and "tab" in query_param
        and query_param["tab"] == "evaluation"
    ):
        return gr.Tabs.update(selected=1)
    else:
        return gr.Tabs.update(selected=0)


def submit_query(single_df, multi_df, text, backends, datatypes, threshold):

    filtered_single = single_df[
        single_df["Model πŸ€—"].str.contains(text) &
        single_df["Backend 🏭"].isin(backends) &
        single_df["Datatype πŸ“₯"].isin(datatypes) &
        (single_df["Average H4 Score ⬆️"] >= threshold)
    ]

    filtered_multi = multi_df[
        multi_df["Model πŸ€—"].str.contains(text) &
        multi_df["Backend 🏭"].isin(backends) &
        multi_df["Datatype πŸ“₯"].isin(datatypes) &
        (multi_df["Average H4 Score ⬆️"] >= threshold)
    ]

    return filtered_single, filtered_multi


# Define demo interface
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Row():
        search_bar = gr.Textbox(
            label="Search πŸ”Ž",
            info="Search for a model and press Submit πŸš€",
            elem_id="search-bar",
        )
        backend_checkboxes = gr.CheckboxGroup(
            choices=["pytorch", "onnxruntime"],
            value=["pytorch", "onnxruntime"],
            label="Backends 🏭",
            info="Select the backends",
            elem_id="backend-checkboxes",
        )
        datatype_checkboxes = gr.CheckboxGroup(
            choices=["float32", "float16"],
            value=["float32", "float16"],
            label="Datatypes πŸ“₯",
            info="Select the load datatypes",
            elem_id="datatype-checkboxes",
        )

    with gr.Row():
        threshold_slider = gr.Slider(
            label="H4 Threshold πŸ“ˆ",
            info="Filter by average H4 score",
            value=0.0,
            elem_id="threshold-slider",
        )

    with gr.Row():
        submit_button = gr.Button(
            value="Submit πŸš€",
            info="Submit the filters",
            elem_id="submit-button",
        )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ–₯️ A100-80GB Benchmark πŸ‹οΈ", elem_id="A100-benchmark", id=0):

            SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3>
            <ul>
                <li>Singleton Batch (1)</li>
                <li>Thousand Tokens (1000)</li>
            </ul>
            """
            gr.HTML(SINGLE_A100_TEXT)

            single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
            # Original leaderboard table
            single_A100_leaderboard = gr.components.Dataframe(
                value=single_A100_df,
                datatype=COLUMNS_DATATYPES,
                headers=list(COLUMNS_MAPPING.values()),
                elem_id="1xA100-table",
            )
            # Dummy Leaderboard table for handling the case when the user uses backspace key
            single_A100_for_search = gr.components.Dataframe(
                value=single_A100_df,
                datatype=COLUMNS_DATATYPES,
                headers=list(COLUMNS_MAPPING.values()),
                max_rows=None,
                visible=False,
            )

        with gr.TabItem("πŸ–₯️ 4xA100-80GB Benchmark πŸ‹οΈ", elem_id="4xA100-benchmark", id=1):
            MULTI_A100_TEXT = """<h3>Multi-GPU (4xA100):</h3>
            <ul>
                <li>Singleton Batch (1)</li>
                <li>Thousand Tokens (1000)</li>
                <li>Using <a href="https://huggingface.co/docs/accelerate" target="_blank">Accelerate</a>'s Auto Device Map</li>
            </ul>"""
            gr.HTML(MULTI_A100_TEXT)
            multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB")
            multi_A100_leaderboard = gr.components.Dataframe(
                value=multi_A100_df,
                datatype=COLUMNS_DATATYPES,
                headers=list(COLUMNS_MAPPING.values()),
                elem_id="4xA100-table",
            )
            # Dummy Leaderboard table for handling the case when the user uses backspace key
            multi_A100_for_search = gr.components.Dataframe(
                value=multi_A100_df,
                datatype=COLUMNS_DATATYPES,
                headers=list(COLUMNS_MAPPING.values()),
                max_rows=None,
                visible=False,
            )

        # Callbacks
        submit_button.click(submit_query,
                            [single_A100_for_search, multi_A100_for_search, search_bar,
                             backend_checkboxes, datatype_checkboxes, threshold_slider],
                            [single_A100_leaderboard, multi_A100_leaderboard])

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
            ).style(show_copy_button=True)

    dummy = gr.Textbox(visible=False)
    demo.load(
        change_tab,
        dummy,
        tabs,
        _js=get_window_url_params,
    )

# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600,
                  args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN])
scheduler.start()

# Launch demo
demo.queue(concurrency_count=40).launch()