Spaces:
Running
Running
File size: 3,059 Bytes
c8763bd 9dc4521 d8b9ce2 d262fb3 c8763bd d262fb3 c8763bd 2773294 efc3d5b 2773294 6640b32 efc3d5b 2773294 efc3d5b 6640b32 efc3d5b d262fb3 c8763bd d4acfca d262fb3 c8763bd efc3d5b d262fb3 c8763bd 2773294 5919d6a 2773294 efc3d5b 6064b14 c8763bd efc3d5b d262fb3 efc3d5b d8b9ce2 efc3d5b d8b9ce2 c8763bd efc3d5b c8763bd d8b9ce2 c8763bd d262fb3 c8763bd 9dc4521 bee5389 d4acfca bee5389 d4acfca c8763bd d4acfca de8c89e efc3d5b 9dc4521 c8763bd 9dc4521 d262fb3 c8763bd 5aacd58 c8763bd d262fb3 c8763bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import os
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
from src.assets.css_html_js import custom_css, get_window_url_params
from src.utils import restart_space, load_dataset_repo, make_clickable_model
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN")
OLD_COLUMNS = ["model", "backend.name", "backend.torch_dtype",
"generate.latency(s)", "generate.throughput(tokens/s)"]
NEW_COLUMNS = ["Model", "Backend π", "Load Datatype",
"Latency (s) β¬οΈ", "Throughput (tokens/s) β¬οΈ"]
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"]
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df():
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load
df = pd.read_csv(
"./llm-perf-dataset/reports/cuda_1_100/inference_report.csv")
# remove quantized models
df = df[df["backend.quantization"].isnull()]
# preprocess
df["model"] = df["model"].apply(make_clickable_model)
# filter
df = df[OLD_COLUMNS]
# rename
df.rename(columns={
df_col: rename_col for df_col, rename_col in zip(OLD_COLUMNS, NEW_COLUMNS)
}, inplace=True)
# sort
df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
return df
# Define demo interface
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π A100-80GB Benchmark ποΈ", elem_id="a100-benchmark", id=0):
dataframe_text = """<h4>Specifications:</h4>
- Single and Multi-GPU Setup
- Batch Size: 1
- Generated Tokens: 100"""
gr.Markdown(dataframe_text, elem_classes="markdown-text")
benchmark_df = get_benchmark_df()
leaderboard_table_lite = gr.components.Dataframe(
value=benchmark_df,
datatype=COLUMNS_DATATYPES,
headers=NEW_COLUMNS,
elem_id="pytorch-A100-benchmark",
)
with gr.Row():
with gr.Column():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN])
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()
|