Spaces:
Running
Running
File size: 6,299 Bytes
c8763bd 0eea6c1 c8763bd 9dc4521 d262fb3 0eea6c1 c8763bd d262fb3 708b21b c8763bd dcfabfb 2773294 6640b32 efc3d5b d262fb3 c8763bd a18f8de e2c5bda efc3d5b 00642fb efc3d5b 6064b14 efc3d5b 708b21b efc3d5b 00642fb efc3d5b c8763bd d8b9ce2 c8763bd 0eea6c1 53e3aab 3d79a97 8e785e9 d262fb3 c8763bd 8e785e9 3d79a97 8e785e9 c8763bd 708b21b a0b186b 708b21b a18f8de 708b21b 8e785e9 708b21b a18f8de 708b21b a18f8de 8e785e9 a18f8de 8e785e9 e985813 8e785e9 53e3aab 8e785e9 53e3aab 8e785e9 3d79a97 708b21b 9dc4521 00642fb d262fb3 0eea6c1 d262fb3 c8763bd 5aacd58 c8763bd d262fb3 c8763bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import json
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
from src.utils import restart_space, load_dataset_repo, make_clickable_model
from src.assets.css_html_js import custom_css, get_window_url_params
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
COLUMNS_MAPPING = {
"model": "Model π€",
"backend.name": "Backend π",
"backend.torch_dtype": "Load Datatype π₯",
"generate.latency(s)": "Latency (s) β¬οΈ",
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
}
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"]
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load
df = pd.read_csv(
f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv")
# preprocess
df["model"] = df["model"].apply(make_clickable_model)
# filter
df = df[list(COLUMNS_MAPPING.keys())]
# rename
df.rename(columns=COLUMNS_MAPPING, inplace=True)
# sort
df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
return df
def change_tab(query_param):
query_param = query_param.replace("'", '"')
query_param = json.loads(query_param)
if (
isinstance(query_param, dict)
and "tab" in query_param
and query_param["tab"] == "evaluation"
):
return gr.Tabs.update(selected=1)
else:
return gr.Tabs.update(selected=0)
def search_tables(single_df, multi_df, query):
filtered_single = single_df[single_df["Model π€"].str.contains(query)]
filtered_multi = multi_df[multi_df["Model π€"].str.contains(query)]
return filtered_single, filtered_multi
def filter_table(df, backends):
filtered_df = df[df["Backend π"].isin(
[backend.lower() for backend in backends])]
return filtered_df
# Define demo interface
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
with gr.Box(elem_id="search-bar-table-box"):
search_bar = gr.Textbox(
label="Search π",
placeholder="Search your model and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Column():
with gr.Box(elem_id="backend-checkboxes-box"):
backend_checkboxes = gr.CheckboxGroup(
["Pytorch", "OnnxRuntime"],
label="Backends π",
info="Select the backends you want to compare",
elem_id="backend-checkboxes",
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π₯οΈ A100-80GB Benchmark ποΈ", elem_id="A100-benchmark", id=0):
SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3>
<ul>
<li>Singleton Batch (1)</li>
<li>Thousand Tokens (1000)</li>
</ul>
"""
gr.HTML(SINGLE_A100_TEXT)
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
# Original leaderboard table
single_A100_leaderboard = gr.components.Dataframe(
value=single_A100_df,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
elem_id="1xA100-table",
)
# Dummy Leaderboard table for handling the case when the user uses backspace key
single_A100_for_search = gr.components.Dataframe(
value=single_A100_df,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
max_rows=None,
visible=False,
)
MULTI_A100_TEXT = """<h3>Multi-GPU (4xA100):</h3>
<ul>
<li>Singleton Batch (1)</li>
<li>Thousand Tokens (1000)</li>
</ul>"""
gr.HTML(MULTI_A100_TEXT)
multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB")
multi_A100_leaderboard = gr.components.Dataframe(
value=multi_A100_df,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
elem_id="4xA100-table",
)
# Dummy Leaderboard table for handling the case when the user uses backspace key
multi_A100_for_search = gr.components.Dataframe(
value=multi_A100_df,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
max_rows=None,
visible=False,
)
search_bar.submit(
search_tables,
[single_A100_for_search, multi_A100_for_search, search_bar],
[single_A100_leaderboard, multi_A100_leaderboard],
)
# backend_checkboxes.select(
# filter_table,
# [single_A100_for_search, backend_checkboxes],
# multi_A100_leaderboard,
# )
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
dummy = gr.Textbox(visible=False)
demo.load(
change_tab,
dummy,
tabs,
_js=get_window_url_params,
)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN])
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()
|