Spaces:
Running
Running
import os | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import HfApi | |
from huggingface_hub import Repository | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.assets.text_content import * | |
from src.assets.css_html_js import custom_css | |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) | |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" | |
LLM_PERF_DATASET_REPO = "optimum/llm-perf" | |
api = HfApi() | |
def restart_space(): | |
api.restart_space( | |
repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN | |
) | |
def load_all_info_from_hub(): | |
llm_perf_repo = None | |
if OPTIMUM_TOKEN: | |
print("Loading LLM-Perf-Dataset from Hub...") | |
llm_perf_repo = Repository( | |
local_dir="./llm-perf/", | |
clone_from=LLM_PERF_DATASET_REPO, | |
token=OPTIMUM_TOKEN, | |
repo_type="dataset", | |
) | |
llm_perf_repo.git_pull() | |
return llm_perf_repo | |
llm_perf_repo = load_all_info_from_hub() | |
def has_no_nan_values(df, columns): | |
return df[columns].notna().all(axis=1) | |
def has_nan_values(df, columns): | |
return df[columns].isna().any(axis=1) | |
def get_leaderboard_df(): | |
if llm_perf_repo: | |
llm_perf_repo.git_pull() | |
df = pd.read_csv("./llm-perf/reports/cuda_1_100/inference_report.csv") | |
print(df.columns) | |
return df | |
original_df = get_leaderboard_df() | |
leaderboard_df = original_df.copy() | |
def refresh(): | |
leaderboard_df = get_leaderboard_df() | |
return leaderboard_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
print("rendering tab...") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LLM-Perf Benchmark", elem_id="llm-perf-benchmark-tab-table", id=0): | |
leaderboard_table_lite = gr.components.Dataframe( | |
value=leaderboard_df, | |
headers=leaderboard_df.columns.tolist(), | |
max_rows=None, | |
elem_id="leaderboard-table-lite", | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=3600) | |
scheduler.start() | |
demo.queue(concurrency_count=40).launch() | |