BenchmarkBot's picture
reduce weight class and model type sizes
f41da95
raw
history blame
10.7 kB
import os
import gradio as gr
import pandas as pd
import plotly.express as px
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.css_html_js import custom_css, custom_js
from src.assets.text_content import (
TITLE,
INTRODUCTION_TEXT,
ABOUT_TEXT,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
)
from src.utils import (
change_tab,
restart_space,
load_dataset_repo,
process_model_name,
process_model_type,
process_weight_class,
)
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
ALL_COLUMNS_MAPPING = {
"best_scored_model": "Best Scored Model ๐Ÿ†",
"model_type": "Type ๐Ÿค—",
"weight_class": "Class ๐Ÿ‹๏ธ",
#
"backend.name": "Backend ๐Ÿญ",
"backend.torch_dtype": "Dtype ๐Ÿ“ฅ",
"optimizations": "Optimizations ๐Ÿ› ๏ธ",
#
"generate.throughput(tokens/s)": "Throughput (tokens/s) โฌ†๏ธ",
"forward.peak_memory(MB)": "Peak Memory (MB) โฌ‡๏ธ",
"best_score": "Score (%) โฌ†๏ธ",
#
}
ALL_COLUMNS_DATATYPES = [
"markdown",
"str",
"str",
#
"str",
"str",
"str",
#
"number",
"number",
"number",
]
SORTING_COLUMN = ["tradeoff"]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark="1xA100-80GB"):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load and merge
bench_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
scores_df = pd.read_csv(
f"./llm-perf-dataset/reports/Grouped-Open-LLM-Leaderboard.csv"
)
merged_df = bench_df.merge(scores_df, left_on="model", right_on="best_scored_model")
# add optimizations
merged_df["optimizations"] = merged_df[
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"]
].apply(
lambda x: ", ".join(
filter(
lambda x: x != "",
[
"BetterTransformer" if x[0] == True else "",
"LLM.int8" if x[1] == True else "",
"LLM.fp4" if x[2] == True else "",
],
),
)
if any([x[0] == True, x[1] == True, x[2] == True])
else "None",
axis=1,
)
# create composite score
score_distance = 100 - merged_df["best_score"]
# normalize latency between 0 and 100
latency_distance = merged_df["generate.latency(s)"]
merged_df["tradeoff"] = (score_distance**2 + latency_distance**2) ** 0.5
merged_df["tradeoff"] = merged_df["tradeoff"].round(2)
return merged_df
def get_benchmark_table(bench_df):
# sort
bench_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True)
# filter
bench_df = bench_df[list(ALL_COLUMNS_MAPPING.keys())]
# rename
bench_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
# transform
bench_df["Type ๐Ÿค—"] = bench_df["Type ๐Ÿค—"].apply(process_model_type)
bench_df["Class ๐Ÿ‹๏ธ"] = bench_df["Class ๐Ÿ‹๏ธ"].apply(
process_weight_class
)
bench_df["Best Scored Model ๐Ÿ†"] = bench_df["Best Scored Model ๐Ÿ†"].apply(
process_model_name
)
return bench_df
def get_benchmark_plot(bench_df):
# untill falcon gets fixed / natively supported
bench_df = bench_df[bench_df["generate.latency(s)"] < 150]
fig = px.scatter(
bench_df,
x="generate.latency(s)",
y="best_score",
color="model_type",
size="forward.peak_memory(MB)",
custom_data=[
"best_scored_model",
"backend.name",
"backend.torch_dtype",
"optimizations",
"forward.peak_memory(MB)",
"generate.throughput(tokens/s)",
],
color_discrete_sequence=px.colors.qualitative.Light24,
)
fig.update_layout(
title={
"text": "Model Score vs. Latency vs. Memory",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Per 1000 Tokens Latency (s)",
yaxis_title="Open LLM Score (%)",
legend_title="Model Type",
width=1200,
height=600,
)
fig.update_traces(
hovertemplate="<br>".join(
[
"Model: %{customdata[0]}",
"Backend: %{customdata[1]}",
"Load Datatype: %{customdata[2]}",
"Optimizations: %{customdata[3]}",
"Peak Memory (MB): %{customdata[4]}",
"Throughput (tokens/s): %{customdata[5]}",
"Per 1000 Tokens Latency (s): %{x}",
"Open LLM Score (%): %{y}",
]
)
)
return fig
def filter_query(
text,
backends,
datatypes,
optimizations,
score,
memory,
benchmark="1xA100-80GB",
):
raw_df = get_benchmark_df(benchmark=benchmark)
filtered_df = raw_df[
raw_df["best_scored_model"].str.lower().str.contains(text.lower())
& raw_df["backend.name"].isin(backends)
& raw_df["backend.torch_dtype"].isin(datatypes)
& (
pd.concat(
[
raw_df["optimizations"].str.contains(optimization)
for optimization in optimizations
],
axis=1,
).any(axis="columns")
if len(optimizations) > 0
else True
)
& (raw_df["best_score"] >= score)
& (raw_df["forward.peak_memory(MB)"] <= memory)
]
filtered_table = get_benchmark_table(filtered_df)
filtered_plot = get_benchmark_plot(filtered_df)
return filtered_table, filtered_plot
# Dataframes
A100_df = get_benchmark_df(benchmark="1xA100-80GB")
A100_table = get_benchmark_table(A100_df)
A100_plot = get_benchmark_plot(A100_df)
# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
# leaderboard title
gr.HTML(TITLE)
# introduction text
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# leaderboard tabs
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
with gr.TabItem("๐Ÿ–ฅ๏ธ A100-80GB Leaderboar Table ๐Ÿ†", id=0):
# Original leaderboard table
A100_leaderboard = gr.components.Dataframe(
value=A100_table,
datatype=ALL_COLUMNS_DATATYPES,
headers=list(ALL_COLUMNS_MAPPING.values()),
elem_id="1xA100-table",
)
with gr.TabItem("๐Ÿ–ฅ๏ธ A100-80GB Interactive Plot ๐Ÿ“Š", id=2):
# Original leaderboard plot
A100_plotly = gr.components.Plot(
value=A100_plot,
elem_id="1xA100-plot",
show_label=False,
)
with gr.TabItem("๐ŸŽฎ Control Panel ๐ŸŽ›๏ธ", id=3):
# control panel interface
with gr.Row():
with gr.Column(scale=1):
search_bar = gr.Textbox(
label="Model ๐Ÿค—",
info="๐Ÿ” Search for a model name",
elem_id="search-bar",
)
with gr.Column(scale=1):
with gr.Box():
score_slider = gr.Slider(
label="Open LLM Score ๐Ÿ“ˆ",
info="๐ŸŽš๏ธ Slide to minimum Open LLM score",
value=0,
elem_id="threshold-slider",
)
with gr.Column(scale=1):
with gr.Box():
memory_slider = gr.Slider(
label="Peak Memory (MB) ๐Ÿ“ˆ",
info="๐ŸŽš๏ธ Slide to maximum Peak Memory",
minimum=0,
maximum=80 * 1024,
value=80 * 1024,
elem_id="memory-slider",
)
with gr.Row():
with gr.Column(scale=1):
backend_checkboxes = gr.CheckboxGroup(
label="Backends ๐Ÿญ",
choices=["pytorch", "onnxruntime"],
value=["pytorch", "onnxruntime"],
info="โ˜‘๏ธ Select the backends",
elem_id="backend-checkboxes",
)
with gr.Column(scale=1):
datatype_checkboxes = gr.CheckboxGroup(
label="Dtypes ๐Ÿ“ฅ",
choices=["float32", "float16"],
value=["float32", "float16"],
info="โ˜‘๏ธ Select the load dtypes",
elem_id="dtype-checkboxes",
)
with gr.Column(scale=2):
optimizations_checkboxes = gr.CheckboxGroup(
label="Optimizations ๐Ÿ› ๏ธ",
choices=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"],
value=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"],
info="โ˜‘๏ธ Select the optimizations",
elem_id="optimizations-checkboxes",
)
with gr.Row():
filter_button = gr.Button(
value="Filter ๐Ÿš€",
elem_id="filter-button",
)
with gr.TabItem("๐Ÿ“– About โ”", id=4):
gr.HTML(ABOUT_TEXT, elem_classes="html-text")
demo.load(
change_tab,
A100_tabs,
_js=custom_js,
)
filter_button.click(
filter_query,
[
search_bar,
backend_checkboxes,
datatype_checkboxes,
optimizations_checkboxes,
score_slider,
memory_slider,
],
[A100_leaderboard, A100_plotly],
)
with gr.Row():
with gr.Accordion("๐Ÿ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space,
"interval",
seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN],
)
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()
demo.queue(concurrency_count=40).launch()