Spaces:
Running
Running
Commit
Β·
14d526b
1
Parent(s):
08604d0
added custom kernels comparison
Browse files- app.py +7 -5
- src/control_panel.py +5 -5
- src/{exllama.py β custom_kernels.py} +63 -36
- src/llm_perf.py +10 -8
app.py
CHANGED
@@ -7,7 +7,7 @@ from src.latency_score_memory import create_lat_score_mem_plot
|
|
7 |
from src.leaderboard import create_leaderboard_table
|
8 |
from src.bettertransformer import create_bt_plots
|
9 |
from src.flashattentionv2 import create_fa2_plots
|
10 |
-
from src.
|
11 |
from src.llm_perf import get_llm_perf_df
|
12 |
from src.assets import custom_css
|
13 |
from src.content import (
|
@@ -60,8 +60,10 @@ with demo:
|
|
60 |
bt_prefill_plot, bt_decode_plot = create_bt_plots(llm_perf_df)
|
61 |
with gr.TabItem("FlashAttentionV2 Speedup π", id=3):
|
62 |
fa2_prefill_plot, fa2_decode_plot = create_fa2_plots(llm_perf_df)
|
63 |
-
with gr.TabItem("
|
64 |
-
|
|
|
|
|
65 |
|
66 |
####################### CONTROL CALLBACK #######################
|
67 |
create_control_callback(
|
@@ -82,8 +84,8 @@ with demo:
|
|
82 |
bt_decode_plot,
|
83 |
fa2_prefill_plot,
|
84 |
fa2_decode_plot,
|
85 |
-
|
86 |
-
|
87 |
)
|
88 |
####################### ABOUT TAB #######################
|
89 |
with gr.TabItem("About π", id=3):
|
|
|
7 |
from src.leaderboard import create_leaderboard_table
|
8 |
from src.bettertransformer import create_bt_plots
|
9 |
from src.flashattentionv2 import create_fa2_plots
|
10 |
+
from src.custom_kernels import create_custom_kernels_plots
|
11 |
from src.llm_perf import get_llm_perf_df
|
12 |
from src.assets import custom_css
|
13 |
from src.content import (
|
|
|
60 |
bt_prefill_plot, bt_decode_plot = create_bt_plots(llm_perf_df)
|
61 |
with gr.TabItem("FlashAttentionV2 Speedup π", id=3):
|
62 |
fa2_prefill_plot, fa2_decode_plot = create_fa2_plots(llm_perf_df)
|
63 |
+
with gr.TabItem("Custom Quantization Kernels Comparison π", id=4):
|
64 |
+
custom_kernels_prefill_plot, custom_kernels_decode_plot = create_custom_kernels_plots(
|
65 |
+
llm_perf_df
|
66 |
+
)
|
67 |
|
68 |
####################### CONTROL CALLBACK #######################
|
69 |
create_control_callback(
|
|
|
84 |
bt_decode_plot,
|
85 |
fa2_prefill_plot,
|
86 |
fa2_decode_plot,
|
87 |
+
custom_kernels_prefill_plot,
|
88 |
+
custom_kernels_decode_plot,
|
89 |
)
|
90 |
####################### ABOUT TAB #######################
|
91 |
with gr.TabItem("About π", id=3):
|
src/control_panel.py
CHANGED
@@ -5,7 +5,7 @@ from src.leaderboard import get_leaderboard_df
|
|
5 |
from src.latency_score_memory import get_lat_score_mem_fig
|
6 |
from src.bettertransformer import get_bt_prefill_fig, get_bt_decode_fig
|
7 |
from src.flashattentionv2 import get_fa2_prefill_fig, get_fa2_decode_fig
|
8 |
-
from src.
|
9 |
|
10 |
|
11 |
def create_control_panel(machine: str = "hf-dgx-01"):
|
@@ -133,8 +133,8 @@ def filter_fn(
|
|
133 |
filtered_bt_decode_fig = get_bt_decode_fig(filtered_df)
|
134 |
filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df)
|
135 |
filtered_fa2_decode_fig = get_fa2_decode_fig(filtered_df)
|
136 |
-
|
137 |
-
|
138 |
|
139 |
return [
|
140 |
filtered_leaderboard_df,
|
@@ -143,8 +143,8 @@ def filter_fn(
|
|
143 |
filtered_bt_decode_fig,
|
144 |
filtered_fa2_prefill_fig,
|
145 |
filtered_fa2_decode_fig,
|
146 |
-
|
147 |
-
|
148 |
]
|
149 |
|
150 |
|
|
|
5 |
from src.latency_score_memory import get_lat_score_mem_fig
|
6 |
from src.bettertransformer import get_bt_prefill_fig, get_bt_decode_fig
|
7 |
from src.flashattentionv2 import get_fa2_prefill_fig, get_fa2_decode_fig
|
8 |
+
from src.custom_kernels import get_custom_kernels_prefill_fig, get_custom_kernels_decode_fig
|
9 |
|
10 |
|
11 |
def create_control_panel(machine: str = "hf-dgx-01"):
|
|
|
133 |
filtered_bt_decode_fig = get_bt_decode_fig(filtered_df)
|
134 |
filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df)
|
135 |
filtered_fa2_decode_fig = get_fa2_decode_fig(filtered_df)
|
136 |
+
filtered_custom_kernels_prefill_fig = get_custom_kernels_prefill_fig(filtered_df)
|
137 |
+
filtered_custom_kernels_decode_fig = get_custom_kernels_decode_fig(filtered_df)
|
138 |
|
139 |
return [
|
140 |
filtered_leaderboard_df,
|
|
|
143 |
filtered_bt_decode_fig,
|
144 |
filtered_fa2_prefill_fig,
|
145 |
filtered_fa2_decode_fig,
|
146 |
+
filtered_custom_kernels_prefill_fig,
|
147 |
+
filtered_custom_kernels_decode_fig,
|
148 |
]
|
149 |
|
150 |
|
src/{exllama.py β custom_kernels.py}
RENAMED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
import plotly.express as px
|
4 |
|
5 |
|
6 |
-
|
7 |
# open llm
|
8 |
"Model π€",
|
9 |
"Arch ποΈ",
|
@@ -14,71 +14,96 @@ EXLLAMA_DATA = [
|
|
14 |
# deployment settings
|
15 |
"DType π₯",
|
16 |
"Backend π",
|
|
|
17 |
"Quantization ποΈ",
|
|
|
|
|
18 |
# primary measurements
|
19 |
"Prefill Latency (s)",
|
20 |
-
"Prefill Latency (s)
|
21 |
"Decode Throughput (tokens/s)",
|
22 |
-
"Decode Throughput (tokens/s)
|
23 |
-
"E2E Throughput (tokens/s)",
|
24 |
-
"E2E Throughput (tokens/s) Exllama",
|
25 |
# speedups
|
26 |
"Prefill Latency Speedup (%)",
|
27 |
"Decode Throughput Speedup (%)",
|
28 |
]
|
29 |
|
30 |
|
31 |
-
def
|
32 |
copy_df = llm_perf_df.copy()
|
33 |
-
# seperate vanilla GPTQ experiments from
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
exllamav1_df = copy_df[(copy_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV1")]
|
36 |
exllamav2_df = copy_df[(copy_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV2")]
|
|
|
|
|
37 |
# merge the three dataframes
|
38 |
exllamav1_df = pd.merge(
|
39 |
-
|
40 |
exllamav1_df,
|
41 |
on=["Model π€"],
|
42 |
-
suffixes=["", "
|
43 |
)
|
44 |
exllamav2_df = pd.merge(
|
45 |
-
|
46 |
exllamav2_df,
|
47 |
on=["Model π€"],
|
48 |
-
suffixes=["", "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
)
|
50 |
# concat the two dataframes row-wise
|
51 |
-
|
52 |
-
exllama_df["Quantization ποΈ"] = exllama_df["Quantization ποΈ Exllama"]
|
53 |
# compute speedups
|
54 |
-
|
55 |
-
(
|
56 |
).round(2) - 100
|
57 |
-
|
58 |
-
(
|
|
|
|
|
|
|
|
|
59 |
).round(2) - 100
|
60 |
# filter speedups > 1000%
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
return
|
65 |
|
66 |
|
67 |
-
def
|
68 |
-
|
69 |
# plot
|
70 |
decode_fig = px.box(
|
71 |
-
|
72 |
x="Arch ποΈ",
|
73 |
y="Decode Throughput Speedup (%)",
|
74 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
75 |
-
custom_data=
|
76 |
-
color="Quantization ποΈ
|
77 |
points="all",
|
78 |
)
|
79 |
# add hover data
|
80 |
decode_fig.update_traces(
|
81 |
-
hovertemplate="<br>".join(
|
|
|
|
|
82 |
)
|
83 |
# add layout
|
84 |
decode_fig.update_layout(
|
@@ -99,21 +124,23 @@ def get_exllama_decode_fig(llm_perf_df):
|
|
99 |
return decode_fig
|
100 |
|
101 |
|
102 |
-
def
|
103 |
-
|
104 |
# plot
|
105 |
prefill_fig = px.box(
|
106 |
-
|
107 |
x="Arch ποΈ",
|
108 |
y="Prefill Latency Speedup (%)",
|
109 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
110 |
-
custom_data=
|
111 |
-
color="Quantization ποΈ
|
112 |
points="all",
|
113 |
)
|
114 |
# add hover data
|
115 |
prefill_fig.update_traces(
|
116 |
-
hovertemplate="<br>".join(
|
|
|
|
|
117 |
)
|
118 |
# add layout
|
119 |
prefill_fig.update_layout(
|
@@ -134,12 +161,12 @@ def get_exllama_prefill_fig(llm_perf_df):
|
|
134 |
return prefill_fig
|
135 |
|
136 |
|
137 |
-
def
|
138 |
# descriptive text
|
139 |
gr.HTML("π Hover over the points π for additional information.", elem_id="text")
|
140 |
# get figures
|
141 |
-
prefill_fig =
|
142 |
-
decode_fig =
|
143 |
|
144 |
# create plots
|
145 |
prefill_plot = gr.components.Plot(value=prefill_fig, elem_id="plot", show_label=False)
|
|
|
3 |
import plotly.express as px
|
4 |
|
5 |
|
6 |
+
CUSTOM_KERNELS_DATA = [
|
7 |
# open llm
|
8 |
"Model π€",
|
9 |
"Arch ποΈ",
|
|
|
14 |
# deployment settings
|
15 |
"DType π₯",
|
16 |
"Backend π",
|
17 |
+
"Optimization π οΈ",
|
18 |
"Quantization ποΈ",
|
19 |
+
"Optimization π οΈ Custom Kernel",
|
20 |
+
"Quantization ποΈ Custom Kernel",
|
21 |
# primary measurements
|
22 |
"Prefill Latency (s)",
|
23 |
+
"Prefill Latency (s) Custom Kernel",
|
24 |
"Decode Throughput (tokens/s)",
|
25 |
+
"Decode Throughput (tokens/s) Custom Kernel",
|
|
|
|
|
26 |
# speedups
|
27 |
"Prefill Latency Speedup (%)",
|
28 |
"Decode Throughput Speedup (%)",
|
29 |
]
|
30 |
|
31 |
|
32 |
+
def get_custom_kernels_df(llm_perf_df):
|
33 |
copy_df = llm_perf_df.copy()
|
34 |
+
# seperate vanilla GPTQ experiments from Custom Kernel experiments
|
35 |
+
vanilla_df = copy_df[
|
36 |
+
(copy_df["Backend π"] == "pytorch") &
|
37 |
+
(copy_df["Quantization ποΈ"] == "None") &
|
38 |
+
(copy_df["Optimization π οΈ"] == "None") &
|
39 |
+
(copy_df["DType π₯"] == "float16")
|
40 |
+
]
|
41 |
exllamav1_df = copy_df[(copy_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV1")]
|
42 |
exllamav2_df = copy_df[(copy_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV2")]
|
43 |
+
gemm_df = copy_df[(copy_df["Quantization ποΈ"] == "AWQ.4bit+GEMM")]
|
44 |
+
gemv_df = copy_df[(copy_df["Quantization ποΈ"] == "AWQ.4bit+GEMV")]
|
45 |
# merge the three dataframes
|
46 |
exllamav1_df = pd.merge(
|
47 |
+
vanilla_df,
|
48 |
exllamav1_df,
|
49 |
on=["Model π€"],
|
50 |
+
suffixes=["", " Custom Kernel"],
|
51 |
)
|
52 |
exllamav2_df = pd.merge(
|
53 |
+
vanilla_df,
|
54 |
exllamav2_df,
|
55 |
on=["Model π€"],
|
56 |
+
suffixes=["", " Custom Kernel"],
|
57 |
+
)
|
58 |
+
gemm_df = pd.merge(
|
59 |
+
vanilla_df,
|
60 |
+
gemm_df,
|
61 |
+
on=["Model π€"],
|
62 |
+
suffixes=["", " Custom Kernel"],
|
63 |
+
)
|
64 |
+
gemv_df = pd.merge(
|
65 |
+
vanilla_df,
|
66 |
+
gemv_df,
|
67 |
+
on=["Model π€"],
|
68 |
+
suffixes=["", " Custom Kernel"],
|
69 |
)
|
70 |
# concat the two dataframes row-wise
|
71 |
+
custom_kernels_df = pd.concat([exllamav1_df, exllamav2_df, gemm_df, gemv_df])
|
|
|
72 |
# compute speedups
|
73 |
+
custom_kernels_df["Prefill Latency Speedup (%)"] = (
|
74 |
+
(custom_kernels_df["Prefill Latency (s)"] / custom_kernels_df["Prefill Latency (s) Custom Kernel"]) * 100
|
75 |
).round(2) - 100
|
76 |
+
custom_kernels_df["Decode Throughput Speedup (%)"] = (
|
77 |
+
(
|
78 |
+
custom_kernels_df["Decode Throughput (tokens/s) Custom Kernel"]
|
79 |
+
/ custom_kernels_df["Decode Throughput (tokens/s)"]
|
80 |
+
)
|
81 |
+
* 100
|
82 |
).round(2) - 100
|
83 |
# filter speedups > 1000%
|
84 |
+
custom_kernels_df = custom_kernels_df[custom_kernels_df["Prefill Latency Speedup (%)"] < 1000]
|
85 |
+
custom_kernels_df = custom_kernels_df[custom_kernels_df["Decode Throughput Speedup (%)"] < 1000]
|
86 |
|
87 |
+
return custom_kernels_df
|
88 |
|
89 |
|
90 |
+
def get_custom_kernels_decode_fig(llm_perf_df):
|
91 |
+
custom_kernels_df = get_custom_kernels_df(llm_perf_df)
|
92 |
# plot
|
93 |
decode_fig = px.box(
|
94 |
+
custom_kernels_df,
|
95 |
x="Arch ποΈ",
|
96 |
y="Decode Throughput Speedup (%)",
|
97 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
98 |
+
custom_data=CUSTOM_KERNELS_DATA,
|
99 |
+
color="Quantization ποΈ Custom Kernel",
|
100 |
points="all",
|
101 |
)
|
102 |
# add hover data
|
103 |
decode_fig.update_traces(
|
104 |
+
hovertemplate="<br>".join(
|
105 |
+
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(CUSTOM_KERNELS_DATA)]
|
106 |
+
)
|
107 |
)
|
108 |
# add layout
|
109 |
decode_fig.update_layout(
|
|
|
124 |
return decode_fig
|
125 |
|
126 |
|
127 |
+
def get_custom_kernels_prefill_fig(llm_perf_df):
|
128 |
+
custom_kernels_df = get_custom_kernels_df(llm_perf_df)
|
129 |
# plot
|
130 |
prefill_fig = px.box(
|
131 |
+
custom_kernels_df,
|
132 |
x="Arch ποΈ",
|
133 |
y="Prefill Latency Speedup (%)",
|
134 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
135 |
+
custom_data=CUSTOM_KERNELS_DATA,
|
136 |
+
color="Quantization ποΈ Custom Kernel",
|
137 |
points="all",
|
138 |
)
|
139 |
# add hover data
|
140 |
prefill_fig.update_traces(
|
141 |
+
hovertemplate="<br>".join(
|
142 |
+
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(CUSTOM_KERNELS_DATA)]
|
143 |
+
)
|
144 |
)
|
145 |
# add layout
|
146 |
prefill_fig.update_layout(
|
|
|
161 |
return prefill_fig
|
162 |
|
163 |
|
164 |
+
def create_custom_kernels_plots(llm_perf_df):
|
165 |
# descriptive text
|
166 |
gr.HTML("π Hover over the points π for additional information.", elem_id="text")
|
167 |
# get figures
|
168 |
+
prefill_fig = get_custom_kernels_prefill_fig(llm_perf_df)
|
169 |
+
decode_fig = get_custom_kernels_decode_fig(llm_perf_df)
|
170 |
|
171 |
# create plots
|
172 |
prefill_plot = gr.components.Plot(value=prefill_fig, elem_id="plot", show_label=False)
|
src/llm_perf.py
CHANGED
@@ -38,14 +38,16 @@ SORTING_ASCENDING = [False, True, False]
|
|
38 |
|
39 |
|
40 |
def get_llm_df():
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
return llm_df
|
51 |
|
|
|
38 |
|
39 |
|
40 |
def get_llm_df():
|
41 |
+
# commented for now since scraping script is not working
|
42 |
+
# hf_hub_download(
|
43 |
+
# repo_id=LLM_PERF_DATASET_REPO,
|
44 |
+
# filename="open-llm.csv",
|
45 |
+
# local_dir="dataset",
|
46 |
+
# repo_type="dataset",
|
47 |
+
# token=HF_TOKEN,
|
48 |
+
# )
|
49 |
+
# llm_df = pd.read_csv("dataset/open-llm.csv")
|
50 |
+
llm_df = pd.read_csv("https://huggingface.co/datasets/optimum/llm-perf-dataset/raw/e8628583f0c31457cd5f8b81352735263117fbb4/open-llm.csv")
|
51 |
|
52 |
return llm_df
|
53 |
|