Spaces:
Running
Running
BenchmarkBot
commited on
Commit
Β·
531390e
1
Parent(s):
483e3a1
remove memory for now because there are errors
Browse files
app.py
CHANGED
@@ -40,7 +40,7 @@ ALL_COLUMNS_MAPPING = {
|
|
40 |
"optimizations": "Optimizations π οΈ",
|
41 |
#
|
42 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
43 |
-
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
44 |
#
|
45 |
"best_scored_model": "Best Scored Model π",
|
46 |
"best_score": "Best Score (%) β¬οΈ",
|
@@ -84,9 +84,9 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
|
|
84 |
)
|
85 |
|
86 |
# convert peak memory to int
|
87 |
-
merged_df["forward.peak_memory(MB)"] = merged_df["forward.peak_memory(MB)"].apply(
|
88 |
-
|
89 |
-
)
|
90 |
|
91 |
# add optimizations
|
92 |
merged_df["optimizations"] = merged_df[
|
@@ -149,13 +149,13 @@ def get_benchmark_plot(bench_df):
|
|
149 |
x="generate.latency(s)",
|
150 |
y="best_score",
|
151 |
color="model_type",
|
152 |
-
size="forward.peak_memory(MB)",
|
153 |
custom_data=[
|
154 |
"best_scored_model",
|
155 |
"backend.name",
|
156 |
"backend.torch_dtype",
|
157 |
"optimizations",
|
158 |
-
"forward.peak_memory(MB)",
|
159 |
"generate.throughput(tokens/s)",
|
160 |
],
|
161 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
@@ -163,7 +163,7 @@ def get_benchmark_plot(bench_df):
|
|
163 |
|
164 |
fig.update_layout(
|
165 |
title={
|
166 |
-
"text": "Model Score vs. Latency
|
167 |
"y": 0.95,
|
168 |
"x": 0.5,
|
169 |
"xanchor": "center",
|
@@ -183,8 +183,8 @@ def get_benchmark_plot(bench_df):
|
|
183 |
"Backend: %{customdata[1]}",
|
184 |
"Load Datatype: %{customdata[2]}",
|
185 |
"Optimizations: %{customdata[3]}",
|
186 |
-
"Peak Memory (MB): %{customdata[4]}",
|
187 |
-
"Throughput (tokens/s): %{customdata[
|
188 |
"Per 1000 Tokens Latency (s): %{x}",
|
189 |
"Open LLM Score (%): %{y}",
|
190 |
]
|
@@ -200,7 +200,7 @@ def filter_query(
|
|
200 |
datatypes,
|
201 |
optimizations,
|
202 |
score,
|
203 |
-
memory,
|
204 |
benchmark="1xA100-80GB",
|
205 |
):
|
206 |
raw_df = get_benchmark_df(benchmark=benchmark)
|
@@ -221,7 +221,7 @@ def filter_query(
|
|
221 |
else True
|
222 |
)
|
223 |
& (raw_df["best_score"] >= score)
|
224 |
-
& (raw_df["forward.peak_memory(MB)"] <= memory)
|
225 |
]
|
226 |
|
227 |
filtered_table = get_benchmark_table(filtered_df)
|
@@ -291,16 +291,16 @@ with demo:
|
|
291 |
value=0,
|
292 |
elem_id="threshold-slider",
|
293 |
)
|
294 |
-
with gr.Column(scale=1):
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
|
305 |
with gr.Row():
|
306 |
with gr.Column(scale=1):
|
@@ -352,7 +352,7 @@ with demo:
|
|
352 |
datatype_checkboxes,
|
353 |
optimizations_checkboxes,
|
354 |
score_slider,
|
355 |
-
memory_slider,
|
356 |
],
|
357 |
[A100_leaderboard, A100_plotly],
|
358 |
)
|
|
|
40 |
"optimizations": "Optimizations π οΈ",
|
41 |
#
|
42 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
43 |
+
# "forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
44 |
#
|
45 |
"best_scored_model": "Best Scored Model π",
|
46 |
"best_score": "Best Score (%) β¬οΈ",
|
|
|
84 |
)
|
85 |
|
86 |
# convert peak memory to int
|
87 |
+
# merged_df["forward.peak_memory(MB)"] = merged_df["forward.peak_memory(MB)"].apply(
|
88 |
+
# lambda x: int(x)
|
89 |
+
# )
|
90 |
|
91 |
# add optimizations
|
92 |
merged_df["optimizations"] = merged_df[
|
|
|
149 |
x="generate.latency(s)",
|
150 |
y="best_score",
|
151 |
color="model_type",
|
152 |
+
# size="forward.peak_memory(MB)",
|
153 |
custom_data=[
|
154 |
"best_scored_model",
|
155 |
"backend.name",
|
156 |
"backend.torch_dtype",
|
157 |
"optimizations",
|
158 |
+
# "forward.peak_memory(MB)",
|
159 |
"generate.throughput(tokens/s)",
|
160 |
],
|
161 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
|
|
163 |
|
164 |
fig.update_layout(
|
165 |
title={
|
166 |
+
"text": "Model Score vs. Latency",
|
167 |
"y": 0.95,
|
168 |
"x": 0.5,
|
169 |
"xanchor": "center",
|
|
|
183 |
"Backend: %{customdata[1]}",
|
184 |
"Load Datatype: %{customdata[2]}",
|
185 |
"Optimizations: %{customdata[3]}",
|
186 |
+
# "Peak Memory (MB): %{customdata[4]}",
|
187 |
+
"Throughput (tokens/s): %{customdata[4]}",
|
188 |
"Per 1000 Tokens Latency (s): %{x}",
|
189 |
"Open LLM Score (%): %{y}",
|
190 |
]
|
|
|
200 |
datatypes,
|
201 |
optimizations,
|
202 |
score,
|
203 |
+
# memory,
|
204 |
benchmark="1xA100-80GB",
|
205 |
):
|
206 |
raw_df = get_benchmark_df(benchmark=benchmark)
|
|
|
221 |
else True
|
222 |
)
|
223 |
& (raw_df["best_score"] >= score)
|
224 |
+
# & (raw_df["forward.peak_memory(MB)"] <= memory)
|
225 |
]
|
226 |
|
227 |
filtered_table = get_benchmark_table(filtered_df)
|
|
|
291 |
value=0,
|
292 |
elem_id="threshold-slider",
|
293 |
)
|
294 |
+
# with gr.Column(scale=1):
|
295 |
+
# with gr.Box():
|
296 |
+
# memory_slider = gr.Slider(
|
297 |
+
# label="Peak Memory (MB) π",
|
298 |
+
# info="ποΈ Slide to maximum Peak Memory",
|
299 |
+
# minimum=0,
|
300 |
+
# maximum=80 * 1024,
|
301 |
+
# value=80 * 1024,
|
302 |
+
# elem_id="memory-slider",
|
303 |
+
# )
|
304 |
|
305 |
with gr.Row():
|
306 |
with gr.Column(scale=1):
|
|
|
352 |
datatype_checkboxes,
|
353 |
optimizations_checkboxes,
|
354 |
score_slider,
|
355 |
+
# memory_slider,
|
356 |
],
|
357 |
[A100_leaderboard, A100_plotly],
|
358 |
)
|