BenchmarkBot commited on
Commit
531390e
Β·
1 Parent(s): 483e3a1

remove memory for now because there are errors

Browse files
Files changed (1) hide show
  1. app.py +22 -22
app.py CHANGED
@@ -40,7 +40,7 @@ ALL_COLUMNS_MAPPING = {
40
  "optimizations": "Optimizations πŸ› οΈ",
41
  #
42
  "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
43
- "forward.peak_memory(MB)": "Peak Memory (MB) ⬇️",
44
  #
45
  "best_scored_model": "Best Scored Model πŸ†",
46
  "best_score": "Best Score (%) ⬆️",
@@ -84,9 +84,9 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
84
  )
85
 
86
  # convert peak memory to int
87
- merged_df["forward.peak_memory(MB)"] = merged_df["forward.peak_memory(MB)"].apply(
88
- lambda x: int(x)
89
- )
90
 
91
  # add optimizations
92
  merged_df["optimizations"] = merged_df[
@@ -149,13 +149,13 @@ def get_benchmark_plot(bench_df):
149
  x="generate.latency(s)",
150
  y="best_score",
151
  color="model_type",
152
- size="forward.peak_memory(MB)",
153
  custom_data=[
154
  "best_scored_model",
155
  "backend.name",
156
  "backend.torch_dtype",
157
  "optimizations",
158
- "forward.peak_memory(MB)",
159
  "generate.throughput(tokens/s)",
160
  ],
161
  color_discrete_sequence=px.colors.qualitative.Light24,
@@ -163,7 +163,7 @@ def get_benchmark_plot(bench_df):
163
 
164
  fig.update_layout(
165
  title={
166
- "text": "Model Score vs. Latency vs. Memory",
167
  "y": 0.95,
168
  "x": 0.5,
169
  "xanchor": "center",
@@ -183,8 +183,8 @@ def get_benchmark_plot(bench_df):
183
  "Backend: %{customdata[1]}",
184
  "Load Datatype: %{customdata[2]}",
185
  "Optimizations: %{customdata[3]}",
186
- "Peak Memory (MB): %{customdata[4]}",
187
- "Throughput (tokens/s): %{customdata[5]}",
188
  "Per 1000 Tokens Latency (s): %{x}",
189
  "Open LLM Score (%): %{y}",
190
  ]
@@ -200,7 +200,7 @@ def filter_query(
200
  datatypes,
201
  optimizations,
202
  score,
203
- memory,
204
  benchmark="1xA100-80GB",
205
  ):
206
  raw_df = get_benchmark_df(benchmark=benchmark)
@@ -221,7 +221,7 @@ def filter_query(
221
  else True
222
  )
223
  & (raw_df["best_score"] >= score)
224
- & (raw_df["forward.peak_memory(MB)"] <= memory)
225
  ]
226
 
227
  filtered_table = get_benchmark_table(filtered_df)
@@ -291,16 +291,16 @@ with demo:
291
  value=0,
292
  elem_id="threshold-slider",
293
  )
294
- with gr.Column(scale=1):
295
- with gr.Box():
296
- memory_slider = gr.Slider(
297
- label="Peak Memory (MB) πŸ“ˆ",
298
- info="🎚️ Slide to maximum Peak Memory",
299
- minimum=0,
300
- maximum=80 * 1024,
301
- value=80 * 1024,
302
- elem_id="memory-slider",
303
- )
304
 
305
  with gr.Row():
306
  with gr.Column(scale=1):
@@ -352,7 +352,7 @@ with demo:
352
  datatype_checkboxes,
353
  optimizations_checkboxes,
354
  score_slider,
355
- memory_slider,
356
  ],
357
  [A100_leaderboard, A100_plotly],
358
  )
 
40
  "optimizations": "Optimizations πŸ› οΈ",
41
  #
42
  "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
43
+ # "forward.peak_memory(MB)": "Peak Memory (MB) ⬇️",
44
  #
45
  "best_scored_model": "Best Scored Model πŸ†",
46
  "best_score": "Best Score (%) ⬆️",
 
84
  )
85
 
86
  # convert peak memory to int
87
+ # merged_df["forward.peak_memory(MB)"] = merged_df["forward.peak_memory(MB)"].apply(
88
+ # lambda x: int(x)
89
+ # )
90
 
91
  # add optimizations
92
  merged_df["optimizations"] = merged_df[
 
149
  x="generate.latency(s)",
150
  y="best_score",
151
  color="model_type",
152
+ # size="forward.peak_memory(MB)",
153
  custom_data=[
154
  "best_scored_model",
155
  "backend.name",
156
  "backend.torch_dtype",
157
  "optimizations",
158
+ # "forward.peak_memory(MB)",
159
  "generate.throughput(tokens/s)",
160
  ],
161
  color_discrete_sequence=px.colors.qualitative.Light24,
 
163
 
164
  fig.update_layout(
165
  title={
166
+ "text": "Model Score vs. Latency",
167
  "y": 0.95,
168
  "x": 0.5,
169
  "xanchor": "center",
 
183
  "Backend: %{customdata[1]}",
184
  "Load Datatype: %{customdata[2]}",
185
  "Optimizations: %{customdata[3]}",
186
+ # "Peak Memory (MB): %{customdata[4]}",
187
+ "Throughput (tokens/s): %{customdata[4]}",
188
  "Per 1000 Tokens Latency (s): %{x}",
189
  "Open LLM Score (%): %{y}",
190
  ]
 
200
  datatypes,
201
  optimizations,
202
  score,
203
+ # memory,
204
  benchmark="1xA100-80GB",
205
  ):
206
  raw_df = get_benchmark_df(benchmark=benchmark)
 
221
  else True
222
  )
223
  & (raw_df["best_score"] >= score)
224
+ # & (raw_df["forward.peak_memory(MB)"] <= memory)
225
  ]
226
 
227
  filtered_table = get_benchmark_table(filtered_df)
 
291
  value=0,
292
  elem_id="threshold-slider",
293
  )
294
+ # with gr.Column(scale=1):
295
+ # with gr.Box():
296
+ # memory_slider = gr.Slider(
297
+ # label="Peak Memory (MB) πŸ“ˆ",
298
+ # info="🎚️ Slide to maximum Peak Memory",
299
+ # minimum=0,
300
+ # maximum=80 * 1024,
301
+ # value=80 * 1024,
302
+ # elem_id="memory-slider",
303
+ # )
304
 
305
  with gr.Row():
306
  with gr.Column(scale=1):
 
352
  datatype_checkboxes,
353
  optimizations_checkboxes,
354
  score_slider,
355
+ # memory_slider,
356
  ],
357
  [A100_leaderboard, A100_plotly],
358
  )