Spaces:
Running
Running
Commit
Β·
a830adb
1
Parent(s):
f8badc6
add logo
Browse files- app.py +3 -0
- src/assets/css_html_js.py +7 -0
- src/assets/text_content.py +1 -2
app.py
CHANGED
@@ -18,6 +18,7 @@ from src.assets.text_content import (
|
|
18 |
)
|
19 |
|
20 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
21 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
22 |
MACHINE_TO_HARDWARE = {"hf-dgx-01": "A100-80GB π₯οΈ"}
|
23 |
ALL_COLUMNS_MAPPING = {
|
@@ -208,6 +209,8 @@ def filter_query(
|
|
208 |
# Demo interface
|
209 |
demo = gr.Blocks(css=custom_css)
|
210 |
with demo:
|
|
|
|
|
211 |
# leaderboard title
|
212 |
gr.HTML(TITLE)
|
213 |
# introduction text
|
|
|
18 |
)
|
19 |
|
20 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
21 |
+
LOGO_URL = "https://huggingface.co/spaces/optimum/llm-perf-leaderboard/resolve/main/huggy_bench.png"
|
22 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
23 |
MACHINE_TO_HARDWARE = {"hf-dgx-01": "A100-80GB π₯οΈ"}
|
24 |
ALL_COLUMNS_MAPPING = {
|
|
|
209 |
# Demo interface
|
210 |
demo = gr.Blocks(css=custom_css)
|
211 |
with demo:
|
212 |
+
# logo
|
213 |
+
gr.HTML(f'<img src="{LOGO_URL}">', elem_classes="logo")
|
214 |
# leaderboard title
|
215 |
gr.HTML(TITLE)
|
216 |
# introduction text
|
src/assets/css_html_js.py
CHANGED
@@ -1,4 +1,11 @@
|
|
1 |
custom_css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
.descriptive-text {
|
3 |
font-size: 16px !important;
|
4 |
}
|
|
|
1 |
custom_css = """
|
2 |
+
.logo {
|
3 |
+
width: 300px;
|
4 |
+
height: auto;
|
5 |
+
margin: 0 auto;
|
6 |
+
max-width: 100%
|
7 |
+
object-fit: contain;
|
8 |
+
}
|
9 |
.descriptive-text {
|
10 |
font-size: 16px !important;
|
11 |
}
|
src/assets/text_content.py
CHANGED
@@ -13,9 +13,8 @@ ABOUT_TEXT = """<h3>About the π€ LLM-Perf Leaderboard ποΈ</h3>
|
|
13 |
<li>To avoid communication-dependent results, only one GPU is used.</li>
|
14 |
<li>Score is the average evaluation score obtained from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">π€ Open LLM Leaderboard</a>.</li>
|
15 |
<li>LLMs are running on a singleton batch with a prompt size of 256 and generating a 1000 tokens.</li>
|
16 |
-
<li>Peak memory is measured in MB during the generate pass using Py3NVML while assuring the GPU's isolation.</li>
|
17 |
<li>Energy consumption is measured in kWh using CodeCarbon and taking into consideration the GPU, CPU, RAM and location of the machine.</li>
|
18 |
-
<li>
|
19 |
</ul>
|
20 |
"""
|
21 |
|
|
|
13 |
<li>To avoid communication-dependent results, only one GPU is used.</li>
|
14 |
<li>Score is the average evaluation score obtained from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">π€ Open LLM Leaderboard</a>.</li>
|
15 |
<li>LLMs are running on a singleton batch with a prompt size of 256 and generating a 1000 tokens.</li>
|
|
|
16 |
<li>Energy consumption is measured in kWh using CodeCarbon and taking into consideration the GPU, CPU, RAM and location of the machine.</li>
|
17 |
+
<li>We measure three types of memory: Max Allocated Memory, Max Reserved Memory and Max Used Memory. The first two being reported by PyTorch and the last one being observed using PyNVML.</li>
|
18 |
</ul>
|
19 |
"""
|
20 |
|