import os import gradio as gr import pandas as pd import plotly.express as px from apscheduler.schedulers.background import BackgroundScheduler from src.assets.css_html_js import custom_css from src.assets.text_content import ( TITLE, INTRODUCTION_TEXT, ABOUT_TEXT, EXAMPLE_CONFIG_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, ) from src.utils import ( restart_space, load_dataset_repo, process_model_name, process_model_type, ) HARDWARE_NAMES = ["A100-80GB", "RTX4090-24GB"] HARDWARES_EMOJIS = ["🖥️", "💻"] LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) ALL_COLUMNS_MAPPING = { "backend.name": "Backend 🏭", "backend.torch_dtype": "Dtype 📥", "optimizations": "Optimizations 🛠️", "quantization": "Quantization 🗜️", # "weight_class": "Class 🏋️", "model_type": "Type 🤗", # "generate.peak_memory(MB)": "Memory (MB) ⬇️", "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️", "generate.energy_consumption(tokens/kWh)": "Energy (tokens/kWh) ⬇️", "best_score": "Best Score (%) ⬆️", # "best_scored_model": "Best Scored LLM 🏆", } ALL_COLUMNS_DATATYPES = [ "str", "str", "str", "str", # "str", "str", # "number", "number", "number", "str", # "markdown", ] NO_DUPLICATES_COLUMNS = [ "backend.name", "backend.torch_dtype", "optimizations", "quantization", # "weight_class", "model_type", ] SORTING_COLUMN = ["best_score", "generate.latency(s)", "generate.peak_memory(MB)"] SORTING_ASCENDING = [False, True, True] llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"): if llm_perf_dataset_repo: llm_perf_dataset_repo.git_pull() # load data benchmark_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv") clusters_df = pd.read_csv("./llm-perf-dataset/Clustered-Open-LLM-Leaderboard.csv") # merge on model merged_df = benchmark_df.merge( clusters_df, left_on="model", right_on="best_scored_model" ) # transpose energy consumption merged_df["generate.energy_consumption(tokens/kWh)"] = 1 / merged_df[ "generate.energy_consumption(kWh/token)" ].fillna(1) # fix nan values merged_df[ merged_df["generate.energy_consumption(tokens/kWh)"] == 1, "generate.energy_consumption(tokens/kWh)", ] = "N/A" # add optimizations merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply( lambda x: "BetterTransformer" if x else "None" ) # add quantization scheme merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply( lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None") ) # sort merged_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True) # drop duplicates merged_df.drop_duplicates(subset=NO_DUPLICATES_COLUMNS, inplace=True) return merged_df def get_benchmark_table(bench_df): copy_df = bench_df.copy() # filter copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())] # rename copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True) # transform copy_df["Type 🤗"] = copy_df["Type 🤗"].apply(process_model_type) copy_df["Best Scored LLM 🏆"] = copy_df["Best Scored LLM 🏆"].apply( process_model_name ) # process quantization copy_df["Best Score (%) ⬆️"] = copy_df.apply( lambda x: f"{x['Best Score (%) ⬆️']}**" if x["Quantization 🗜️"] in ["BnB.4bit", "GPTQ.4bit"] else x["Best Score (%) ⬆️"], axis=1, ) return copy_df def get_benchmark_chart(bench_df): copy_df = bench_df.copy() # filter latency bigger than 100s copy_df = copy_df[copy_df["generate.latency(s)"] <= 100] # rename model_type copy_df["model_type"] = copy_df["model_type"].apply(process_model_type) fig = px.scatter( copy_df, y="best_score", x="generate.latency(s)", size="generate.peak_memory(MB)", color="model_type", custom_data=list(ALL_COLUMNS_MAPPING.keys()), color_discrete_sequence=px.colors.qualitative.Light24, ) fig.update_layout( title={ "text": "Latency vs. Score vs. Memory", "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "top", }, xaxis_title="Per 1000 tokens Latency (s)", yaxis_title="Open LLM Score (%)", legend_title="LLM Type", width=1200, height=600, ) fig.update_traces( hovertemplate="
".join( [ f"{ALL_COLUMNS_MAPPING[key]}: %{{customdata[{i}]}}" for i, key in enumerate(ALL_COLUMNS_MAPPING.keys()) ] ) ) return fig def filter_query( text, backends, datatypes, optimizations, quantization_scheme, score, memory, hardware, ): raw_df = get_benchmark_df(benchmark=f"Succeeded-1x{hardware}") filtered_df = raw_df[ raw_df["best_scored_model"].str.lower().str.contains(text.lower()) & raw_df["backend.name"].isin(backends) & raw_df["backend.torch_dtype"].isin(datatypes) & ( pd.concat( [ raw_df["optimizations"].str.contains(optimization) for optimization in optimizations ], axis=1, ).any(axis="columns") if len(optimizations) > 0 else True ) & ( pd.concat( [ raw_df["quantization"] == quantization for quantization in quantization_scheme ], axis=1, ).any(axis="columns") if len(quantization_scheme) > 0 else True ) & (raw_df["best_score"] >= score) & (raw_df["forward.peak_memory(MB)"] <= memory) ] filtered_table = get_benchmark_table(filtered_df) filtered_chart = get_benchmark_chart(filtered_df) return filtered_table, filtered_chart # Demo interface demo = gr.Blocks(css=custom_css) with demo: # leaderboard title gr.HTML(TITLE) # introduction text gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text") with gr.Tabs(elem_classes="leaderboard-tabs"): hardware_placeholders = {} hardware_tables = {} hardware_plots = {} ####################### HARDWARE TABS ####################### for i, (hardware, emoji) in enumerate(zip(HARDWARE_NAMES, HARDWARES_EMOJIS)): # dummy placeholder of the hardware name hardware_placeholders[hardware] = gr.Textbox(value=hardware, visible=False) with gr.TabItem(f"{hardware} {emoji}", id=i): with gr.Tabs(elem_classes="hardware-tabs"): # placeholder for full dataframe hardware_df = get_benchmark_df(benchmark=f"Succeeded-1x{hardware}") with gr.TabItem("Leaderboard 🏅", id=0): gr.HTML( "👉 Scroll to the right 👉 for additional columns.", elem_id="descriptive-text", ) # Original leaderboard table hardware_tables[hardware] = gr.components.Dataframe( value=get_benchmark_table(hardware_df), headers=list(ALL_COLUMNS_MAPPING.values()), datatype=ALL_COLUMNS_DATATYPES, elem_id="hardware-table", # show_label=False, ) with gr.TabItem("Plot 📊", id=1): gr.HTML( "👆 Hover over the points 👆 for additional information.", elem_id="descriptive-text", ) # Original leaderboard plot hardware_plots[hardware] = gr.components.Plot( value=get_benchmark_chart(hardware_df), elem_id="hardware-plot", show_label=False, ) ####################### CONTROL PANEL ####################### with gr.TabItem("Control Panel 🎛️", id=2): gr.HTML( "Use this control panel to filter the leaderboard's table and plot.", # noqa: E501 elem_id="descriptive-text", ) with gr.Row(): with gr.Column(): search_bar = gr.Textbox( label="Model 🤗", info="🔍 Search for a model name", elem_id="search-bar", ) with gr.Row(): with gr.Column(scale=1): with gr.Box(): score_slider = gr.Slider( label="Open LLM Score 📈", info="🎚️ Slide to minimum Open LLM score", value=0, elem_id="threshold-slider", ) with gr.Column(scale=1): with gr.Box(): memory_slider = gr.Slider( label="Peak Memory (MB) 📈", info="🎚️ Slide to maximum Peak Memory", minimum=0, maximum=80 * 1024, value=80 * 1024, elem_id="memory-slider", ) with gr.Column(scale=1): backend_checkboxes = gr.CheckboxGroup( label="Backends 🏭", choices=["pytorch", "onnxruntime"], value=["pytorch", "onnxruntime"], info="☑️ Select the backends", elem_id="backend-checkboxes", ) with gr.Row(): with gr.Column(scale=1): datatype_checkboxes = gr.CheckboxGroup( label="Load Dtypes 📥", choices=["float32", "float16"], value=["float32", "float16"], info="☑️ Select the load dtypes", elem_id="dtype-checkboxes", ) with gr.Column(scale=1): optimizations_checkboxes = gr.CheckboxGroup( label="Optimizations 🛠️", choices=["None", "BetterTransformer"], value=["None", "BetterTransformer"], info="☑️ Select the optimizations", elem_id="optimizations-checkboxes", ) with gr.Column(scale=1): quantization_checkboxes = gr.CheckboxGroup( label="Quantizations 🗜️", choices=["None", "BnB.4bit", "GPTQ.4bit"], value=["None", "BnB.4bit", "GPTQ.4bit"], info="☑️ Select the quantization schemes", elem_id="quantization-checkboxes", ) with gr.Row(): filter_button = gr.Button( value="Filter 🚀", elem_id="filter-button", ) for hardware in HARDWARE_NAMES: filter_button.click( filter_query, [ search_bar, backend_checkboxes, datatype_checkboxes, optimizations_checkboxes, quantization_checkboxes, score_slider, memory_slider, hardware_placeholders[hardware], ], [hardware_tables[hardware], hardware_plots[hardware]], ) ####################### ABOUT TAB ####################### with gr.TabItem("About 📖", id=3): gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text") gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text") ####################### CITATION ####################### with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", ).style(show_copy_button=True) # Restart space every hour scheduler = BackgroundScheduler() scheduler.add_job( restart_space, "interval", seconds=3600, args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN], ) scheduler.start() # Launch demo demo.queue(concurrency_count=10).launch()