lds_pdf_parser / app.py
Vineedhar's picture
Update app.py
152ef41 verified
import streamlit as st
import pandas as pd
import numpy as np
import fitz # PyMuPDF
import re
import json
# LICENSE.numpy.BSD-3 - Copyright (c) 2005-2024, NumPy Developers (https://github.com/numpy/numpy/blob/main/LICENSE.txt)
# LICENSE.streamlit.Apachev2 - Copyright (c) Streamlit Inc. (2018-2022) Snowflake Inc. (2022-2024) (https://github.com/streamlit/streamlit/blob/develop/LICENSE)
# LICENSE.pandas.BSD-3 - Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team (https://github.com/pandas-dev/pandas/blob/main/LICENSE)
# LICENSE.re.CNRI - Copyright (c) 1998-2001 by Secret Labs AB. All rights reserved. (https://www.handle.net/python_licenses/python1.6_9-5-00.html)
# LICENSE.json.LGPL - Copyright: (c) 2017-2019 by Brad Jasper (c) 2012-2017 by Trevor Lohrbeer (https://github.com/bradjasper/ImportJSON/blob/master/LICENSE)
# LICENSE.pymupdf.AGPL - Copyright (C) 2023 Artifex Software, Inc. (https://github.com/pymupdf/PyMuPDF/blob/main/COPYING)
def extract_pdf_text(pdf_path):
"""Extract text from a PDF file."""
with fitz.open(pdf_path) as pdf_document:
content_text = ""
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
content_text += page.get_text() + "\n"
return content_text
# Streamlit Application
st.title("PDF Data Extractor")
uploaded_file = st.file_uploader("Upload a PDF File", type="pdf")
if uploaded_file is not None:
with open("temp.pdf", "wb") as f:
f.write(uploaded_file.getbuffer())
pdf_text = extract_pdf_text("temp.pdf")
# Step 2: Extract relevant information from the text using regex
pattern = r"2\s*3\s*4\s*5\s*\n-1,5\s*0([\s\S]*?)\n\nTrainer & Berater-Feedback"
matches = re.findall(pattern, pdf_text)
json_chunks = []
for match in matches:
match = match.replace(",", ".")
values = [value.strip() for value in match.split("\n") if value.strip()]
if len(values) == 22:
json_chunks.append({"current": values})
else:
current = values[1::2]
json_chunks.append({"current": current})
json_output = json.dumps(json_chunks, indent=2)
json_data = json.loads(json_output)
# Define the original data structure
original_data = {
'Title': [
"Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence",
"Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence",
"Personal Competence", "Personal Competence", "Business Competence", "Business Competence", "Business Competence", "Business Competence",
"Business Competence", "Management Competence", "Management Competence", "Management Competence", "Management Competence",
],
'Code': ["P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8", "P9", "P10", "P11", "P12",
"P13", "B1", "B2", "B3", "B4", "B5", "M1", "M2", "M3", "M4"],
'Dimensions': [
"Integrity/ Reliability", "Appearance", "Enthusiasm/Passion", "Learning Motivation/ Self-Development", "Ability to Adapt/Flexibility",
"Communication/Information", "Cooperation/ Team spirit", "Handling of Complex Situations", "Coolness/Handling of Unclear Situations",
"Self-reliance/Initiative", "Conflict Management", "Ability to Assert Oneself/ Negotiation Skills", "Tact and Sensitivity",
"Quality Orientation", "Client Orientation", "Specialized Knowledge", "Methodology/ Didactics/ Language", "Creativity/ Conceptional Skills",
"Project Management", "Result Orientation", "Leadership Skills", "Coach and Advisor"
]
}
df = pd.DataFrame(original_data)
# Add extracted scores to the DataFrame
score_columns = ['Boss_score', 'Colleague_score', 'Colleague_other_score', 'Report_score', 'Customer_score']
for idx, col in enumerate(score_columns):
df[col] = json_data[idx]['current'] + [None] * (len(df) - len(json_data[idx]['current']))
score_pattern = r"\d{1,2},\d{2}"
code_pattern = r"[A-Z]\.[0-9]{1,2}"
all_scores = re.findall(score_pattern, pdf_text)
all_codes = re.findall(code_pattern, pdf_text)
scores = [float(score.replace(",", ".")) for score in all_scores]
codes = [code.strip() for code in all_codes]
if len(codes) >= 44:
codes = codes[22:44]
if len(scores) >= 22:
scores = scores[0:22]
df1 = pd.DataFrame({'Code': [code.replace('.', '') for code in codes], 'All_raters_Score': scores})
df_combined = pd.merge(df, df1, on="Code", how="inner")
feature_cols = ['Boss_score', 'Colleague_score', 'Report_score', 'Customer_score', 'Colleague_other_score']
df_combined[feature_cols] = df_combined[feature_cols].astype(float)
def calculate_self_score(row):
valid_features = [val for val in row[feature_cols] if pd.notna(val)]
num_features = len(valid_features)
if num_features > 1:
sum_features = sum(valid_features) - row['All_raters_Score']
return (row['All_raters_Score'] * num_features) - sum_features
return np.nan
df_combined['Self_score'] = df_combined.apply(calculate_self_score, axis=1)
df_combined['Benchmark_score'] = np.random.uniform(4.8, 5.9, size=len(df_combined)).round(1)
#Step 7 : Picking strengths and weaknesses
# List of keywords/phrases to capture
keywords = [
'Integrity/ Reliability', 'Appearance', 'Enthusiasm/Passion',
'Learning Motivation/ Self-Development', 'Ability to Adapt/Flexibility',
'Communication/Information', 'Cooperation/ Team spirit',
'Handling of Complex Situations', 'Coolness/Handling of Unclear Situations', 'Self-reliance/Initiative',
'Conflict Management', 'Ability to Assert Oneself/ Negotiation Skills',
'Tact and Sensitivity', 'Quality Orientation', 'Client Orientation',
'Specialized Knowledge', 'Methodology/ Didactics/ Language',
'Creativity/ Conceptional Skills', 'Project Management',
'Result Orientation', 'Leadership Skills', 'Coach and Advisor'
]
# Extract phrases between "Topics I would like to discuss... " and "Schedule for the follow-up meeting"
phrases_pattern = r"Please use the form at the end of the section to finalize your development planning\.\s*(.*?)\s*Schedule for the follow-up meeting"
phrases_matches = re.findall(phrases_pattern, pdf_text, re.DOTALL)
# Extract the word after "The biggest strengths and room for improvements perceived by:"
label_pattern = r"The biggest strengths and room for improvements perceived by:\s*(\w+)"
labels = re.findall(label_pattern, pdf_text)
# Process each match and extract only the required keywords
json_output = []
for i, phrases_text in enumerate(phrases_matches):
extracted_phrases = [
phrase for phrase in keywords if phrase in phrases_text
]
if extracted_phrases:
label = labels[i] if i < len(labels) else f"Phrases_{i+1}"
json_output.append({label: extracted_phrases})
# Convert to JSON format
json_output_str = json.dumps(json_output, indent=2)
# Print the JSON result
#print(json_output_str)
json_data = df.to_json(orient='records')
data = []
for item in json_output:
for label, phrases in item.items():
for phrase in phrases:
data.append({'Rater': label, 'Dimensions': phrase})
df4 = pd.DataFrame(data)
#Step 9: Converting Streangths and Weaknesses with scores into json
# Filter dataframes based on 'Label' value
boss, direct, colleague, other_colleague = [df4[df4['Rater'] == label].copy() for label in ['Boss', 'Direct', 'Colleagues', 'Colleague (o']]
# Create mapping dictionaries from df3
mappings = {
'Boss_score': df_combined.set_index('Dimensions')['Boss_score'].to_dict(),
'Report_score': df_combined.set_index('Dimensions')['Report_score'].to_dict(),
'Colleague_score': df_combined.set_index('Dimensions')['Colleague_score'].to_dict(),
'Other_colleague_score': df_combined.set_index('Dimensions')['Colleague_other_score'].to_dict()
}
# Map the values from df3 to the appropriate DataFrames
boss['Score'] = boss['Dimensions'].map(mappings['Boss_score'])
direct['Score'] = direct['Dimensions'].map(mappings['Report_score'])
colleague['Score'] = colleague['Dimensions'].map(mappings['Colleague_score'])
other_colleague['Score'] = other_colleague['Dimensions'].map(mappings['Other_colleague_score'])
boss = boss.sort_values(by = 'Score', ascending = False).reset_index(drop = True)
direct = direct.sort_values(by = 'Score', ascending = False).reset_index(drop = True)
colleague = colleague.sort_values(by = 'Score', ascending = False).reset_index(drop = True)
other_colleague = other_colleague.sort_values(by = 'Score', ascending = False).reset_index(drop = True)
def assign_strength_weakness(df):
df['Strength/Weakness'] = np.nan
df.loc[df.index.isin([0, 1, 2]) & df['Score'].notna(), 'Strength/Weakness'] = 'S'
df.loc[df.index.isin([3, 4, 5]) & df['Score'].notna(), 'Strength/Weakness'] = 'W'
return df
# Apply the function to each DataFrame
boss = assign_strength_weakness(boss)
direct = assign_strength_weakness(direct)
colleague = assign_strength_weakness(colleague)
other_colleague = assign_strength_weakness(other_colleague)
df5 = pd.concat([boss, direct, colleague, other_colleague], axis = 0)
df5 = df5.dropna()
sections = [
"Continue doing the following",
"Start doing the following",
"Reasons why I think that your behavior has worsened concerning the dimensions marked in the \"Perception & Change Section\" of the questionnaire",
"Further tips for your work in our organisation"
]
patterns = {
"Boss": r"VG\n(.*?)(?=\(Boss\))",
"Colleagues": r"Ke\n(.*?)(?=\(Colleagues\))",
"Customers": r"KU\n(.*?)(?=\(Internal/external customers\))"
}
# Function to extract comments for each section
def extract_comments(data, section):
section_pattern = rf"Kom\s+{re.escape(section)}:\n(.*?)(?=(?:IX\. Open Comments|$))"
section_data = re.search(section_pattern, data, re.DOTALL)
if not section_data:
return []
section_text = section_data.group(1)
comments = []
for rater, pattern in patterns.items():
matches = re.findall(pattern, section_text, re.DOTALL)
for match in matches:
comments.append({
"Section": section,
"Rater": rater,
"Comment": match.strip()
})
return comments
# Create dataframes for each section
all_comments = []
for section in sections:
all_comments.extend(extract_comments(pdf_text, section))
df6 = pd.DataFrame(all_comments)
st.write("## Output:")
st.write("### 1. Dataset: Compentency Cluster, Code, Dimensions, Raters and Score")
st.dataframe(df_combined)
st.write("#### Note: The Self Score is calculated as: (All Raters × Number of Raters) − (Sum of Rater Scores)")
st.write("### 2. Extracted list of Strengths and Weaknesses rated by each Rater")
st.write(df5)
st.write("### 3. Extracted list of Open Comments by each Rater")
st.write(df6)
st.write("#### Note: This extraction is not 100% able to extract each Rater comments / feedback. This is will be improved")