Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import fitz # PyMuPDF | |
import re | |
import json | |
# LICENSE.numpy.BSD-3 - Copyright (c) 2005-2024, NumPy Developers (https://github.com/numpy/numpy/blob/main/LICENSE.txt) | |
# LICENSE.streamlit.Apachev2 - Copyright (c) Streamlit Inc. (2018-2022) Snowflake Inc. (2022-2024) (https://github.com/streamlit/streamlit/blob/develop/LICENSE) | |
# LICENSE.pandas.BSD-3 - Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team (https://github.com/pandas-dev/pandas/blob/main/LICENSE) | |
# LICENSE.re.CNRI - Copyright (c) 1998-2001 by Secret Labs AB. All rights reserved. (https://www.handle.net/python_licenses/python1.6_9-5-00.html) | |
# LICENSE.json.LGPL - Copyright: (c) 2017-2019 by Brad Jasper (c) 2012-2017 by Trevor Lohrbeer (https://github.com/bradjasper/ImportJSON/blob/master/LICENSE) | |
# LICENSE.pymupdf.AGPL - Copyright (C) 2023 Artifex Software, Inc. (https://github.com/pymupdf/PyMuPDF/blob/main/COPYING) | |
def extract_pdf_text(pdf_path): | |
"""Extract text from a PDF file.""" | |
with fitz.open(pdf_path) as pdf_document: | |
content_text = "" | |
for page_num in range(len(pdf_document)): | |
page = pdf_document.load_page(page_num) | |
content_text += page.get_text() + "\n" | |
return content_text | |
# Streamlit Application | |
st.title("PDF Data Extractor") | |
uploaded_file = st.file_uploader("Upload a PDF File", type="pdf") | |
if uploaded_file is not None: | |
with open("temp.pdf", "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
pdf_text = extract_pdf_text("temp.pdf") | |
# Step 2: Extract relevant information from the text using regex | |
pattern = r"2\s*3\s*4\s*5\s*\n-1,5\s*0([\s\S]*?)\n\nTrainer & Berater-Feedback" | |
matches = re.findall(pattern, pdf_text) | |
json_chunks = [] | |
for match in matches: | |
match = match.replace(",", ".") | |
values = [value.strip() for value in match.split("\n") if value.strip()] | |
if len(values) == 22: | |
json_chunks.append({"current": values}) | |
else: | |
current = values[1::2] | |
json_chunks.append({"current": current}) | |
json_output = json.dumps(json_chunks, indent=2) | |
json_data = json.loads(json_output) | |
# Define the original data structure | |
original_data = { | |
'Title': [ | |
"Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", | |
"Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", | |
"Personal Competence", "Personal Competence", "Business Competence", "Business Competence", "Business Competence", "Business Competence", | |
"Business Competence", "Management Competence", "Management Competence", "Management Competence", "Management Competence", | |
], | |
'Code': ["P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8", "P9", "P10", "P11", "P12", | |
"P13", "B1", "B2", "B3", "B4", "B5", "M1", "M2", "M3", "M4"], | |
'Dimensions': [ | |
"Integrity/ Reliability", "Appearance", "Enthusiasm/Passion", "Learning Motivation/ Self-Development", "Ability to Adapt/Flexibility", | |
"Communication/Information", "Cooperation/ Team spirit", "Handling of Complex Situations", "Coolness/Handling of Unclear Situations", | |
"Self-reliance/Initiative", "Conflict Management", "Ability to Assert Oneself/ Negotiation Skills", "Tact and Sensitivity", | |
"Quality Orientation", "Client Orientation", "Specialized Knowledge", "Methodology/ Didactics/ Language", "Creativity/ Conceptional Skills", | |
"Project Management", "Result Orientation", "Leadership Skills", "Coach and Advisor" | |
] | |
} | |
df = pd.DataFrame(original_data) | |
# Add extracted scores to the DataFrame | |
score_columns = ['Boss_score', 'Colleague_score', 'Colleague_other_score', 'Report_score', 'Customer_score'] | |
for idx, col in enumerate(score_columns): | |
df[col] = json_data[idx]['current'] + [None] * (len(df) - len(json_data[idx]['current'])) | |
score_pattern = r"\d{1,2},\d{2}" | |
code_pattern = r"[A-Z]\.[0-9]{1,2}" | |
all_scores = re.findall(score_pattern, pdf_text) | |
all_codes = re.findall(code_pattern, pdf_text) | |
scores = [float(score.replace(",", ".")) for score in all_scores] | |
codes = [code.strip() for code in all_codes] | |
if len(codes) >= 44: | |
codes = codes[22:44] | |
if len(scores) >= 22: | |
scores = scores[0:22] | |
df1 = pd.DataFrame({'Code': [code.replace('.', '') for code in codes], 'All_raters_Score': scores}) | |
df_combined = pd.merge(df, df1, on="Code", how="inner") | |
feature_cols = ['Boss_score', 'Colleague_score', 'Report_score', 'Customer_score', 'Colleague_other_score'] | |
df_combined[feature_cols] = df_combined[feature_cols].astype(float) | |
def calculate_self_score(row): | |
valid_features = [val for val in row[feature_cols] if pd.notna(val)] | |
num_features = len(valid_features) | |
if num_features > 1: | |
sum_features = sum(valid_features) - row['All_raters_Score'] | |
return (row['All_raters_Score'] * num_features) - sum_features | |
return np.nan | |
df_combined['Self_score'] = df_combined.apply(calculate_self_score, axis=1) | |
df_combined['Benchmark_score'] = np.random.uniform(4.8, 5.9, size=len(df_combined)).round(1) | |
#Step 7 : Picking strengths and weaknesses | |
# List of keywords/phrases to capture | |
keywords = [ | |
'Integrity/ Reliability', 'Appearance', 'Enthusiasm/Passion', | |
'Learning Motivation/ Self-Development', 'Ability to Adapt/Flexibility', | |
'Communication/Information', 'Cooperation/ Team spirit', | |
'Handling of Complex Situations', 'Coolness/Handling of Unclear Situations', 'Self-reliance/Initiative', | |
'Conflict Management', 'Ability to Assert Oneself/ Negotiation Skills', | |
'Tact and Sensitivity', 'Quality Orientation', 'Client Orientation', | |
'Specialized Knowledge', 'Methodology/ Didactics/ Language', | |
'Creativity/ Conceptional Skills', 'Project Management', | |
'Result Orientation', 'Leadership Skills', 'Coach and Advisor' | |
] | |
# Extract phrases between "Topics I would like to discuss... " and "Schedule for the follow-up meeting" | |
phrases_pattern = r"Please use the form at the end of the section to finalize your development planning\.\s*(.*?)\s*Schedule for the follow-up meeting" | |
phrases_matches = re.findall(phrases_pattern, pdf_text, re.DOTALL) | |
# Extract the word after "The biggest strengths and room for improvements perceived by:" | |
label_pattern = r"The biggest strengths and room for improvements perceived by:\s*(\w+)" | |
labels = re.findall(label_pattern, pdf_text) | |
# Process each match and extract only the required keywords | |
json_output = [] | |
for i, phrases_text in enumerate(phrases_matches): | |
extracted_phrases = [ | |
phrase for phrase in keywords if phrase in phrases_text | |
] | |
if extracted_phrases: | |
label = labels[i] if i < len(labels) else f"Phrases_{i+1}" | |
json_output.append({label: extracted_phrases}) | |
# Convert to JSON format | |
json_output_str = json.dumps(json_output, indent=2) | |
# Print the JSON result | |
#print(json_output_str) | |
json_data = df.to_json(orient='records') | |
data = [] | |
for item in json_output: | |
for label, phrases in item.items(): | |
for phrase in phrases: | |
data.append({'Rater': label, 'Dimensions': phrase}) | |
df4 = pd.DataFrame(data) | |
#Step 9: Converting Streangths and Weaknesses with scores into json | |
# Filter dataframes based on 'Label' value | |
boss, direct, colleague, other_colleague = [df4[df4['Rater'] == label].copy() for label in ['Boss', 'Direct', 'Colleagues', 'Colleague (o']] | |
# Create mapping dictionaries from df3 | |
mappings = { | |
'Boss_score': df_combined.set_index('Dimensions')['Boss_score'].to_dict(), | |
'Report_score': df_combined.set_index('Dimensions')['Report_score'].to_dict(), | |
'Colleague_score': df_combined.set_index('Dimensions')['Colleague_score'].to_dict(), | |
'Other_colleague_score': df_combined.set_index('Dimensions')['Colleague_other_score'].to_dict() | |
} | |
# Map the values from df3 to the appropriate DataFrames | |
boss['Score'] = boss['Dimensions'].map(mappings['Boss_score']) | |
direct['Score'] = direct['Dimensions'].map(mappings['Report_score']) | |
colleague['Score'] = colleague['Dimensions'].map(mappings['Colleague_score']) | |
other_colleague['Score'] = other_colleague['Dimensions'].map(mappings['Other_colleague_score']) | |
boss = boss.sort_values(by = 'Score', ascending = False).reset_index(drop = True) | |
direct = direct.sort_values(by = 'Score', ascending = False).reset_index(drop = True) | |
colleague = colleague.sort_values(by = 'Score', ascending = False).reset_index(drop = True) | |
other_colleague = other_colleague.sort_values(by = 'Score', ascending = False).reset_index(drop = True) | |
def assign_strength_weakness(df): | |
df['Strength/Weakness'] = np.nan | |
df.loc[df.index.isin([0, 1, 2]) & df['Score'].notna(), 'Strength/Weakness'] = 'S' | |
df.loc[df.index.isin([3, 4, 5]) & df['Score'].notna(), 'Strength/Weakness'] = 'W' | |
return df | |
# Apply the function to each DataFrame | |
boss = assign_strength_weakness(boss) | |
direct = assign_strength_weakness(direct) | |
colleague = assign_strength_weakness(colleague) | |
other_colleague = assign_strength_weakness(other_colleague) | |
df5 = pd.concat([boss, direct, colleague, other_colleague], axis = 0) | |
df5 = df5.dropna() | |
sections = [ | |
"Continue doing the following", | |
"Start doing the following", | |
"Reasons why I think that your behavior has worsened concerning the dimensions marked in the \"Perception & Change Section\" of the questionnaire", | |
"Further tips for your work in our organisation" | |
] | |
patterns = { | |
"Boss": r"VG\n(.*?)(?=\(Boss\))", | |
"Colleagues": r"Ke\n(.*?)(?=\(Colleagues\))", | |
"Customers": r"KU\n(.*?)(?=\(Internal/external customers\))" | |
} | |
# Function to extract comments for each section | |
def extract_comments(data, section): | |
section_pattern = rf"Kom\s+{re.escape(section)}:\n(.*?)(?=(?:IX\. Open Comments|$))" | |
section_data = re.search(section_pattern, data, re.DOTALL) | |
if not section_data: | |
return [] | |
section_text = section_data.group(1) | |
comments = [] | |
for rater, pattern in patterns.items(): | |
matches = re.findall(pattern, section_text, re.DOTALL) | |
for match in matches: | |
comments.append({ | |
"Section": section, | |
"Rater": rater, | |
"Comment": match.strip() | |
}) | |
return comments | |
# Create dataframes for each section | |
all_comments = [] | |
for section in sections: | |
all_comments.extend(extract_comments(pdf_text, section)) | |
df6 = pd.DataFrame(all_comments) | |
st.write("## Output:") | |
st.write("### 1. Dataset: Compentency Cluster, Code, Dimensions, Raters and Score") | |
st.dataframe(df_combined) | |
st.write("#### Note: The Self Score is calculated as: (All Raters × Number of Raters) − (Sum of Rater Scores)") | |
st.write("### 2. Extracted list of Strengths and Weaknesses rated by each Rater") | |
st.write(df5) | |
st.write("### 3. Extracted list of Open Comments by each Rater") | |
st.write(df6) | |
st.write("#### Note: This extraction is not 100% able to extract each Rater comments / feedback. This is will be improved") |