Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -142,14 +142,14 @@ if uploaded_file is not None:
|
|
142 |
for item in json_output:
|
143 |
for label, phrases in item.items():
|
144 |
for phrase in phrases:
|
145 |
-
data.append({'
|
146 |
|
147 |
df4 = pd.DataFrame(data)
|
148 |
|
149 |
#Step 9: Converting Streangths and Weaknesses with scores into json
|
150 |
|
151 |
# Filter dataframes based on 'Label' value
|
152 |
-
boss, direct, colleague, other_colleague = [df4[df4['
|
153 |
|
154 |
# Create mapping dictionaries from df3
|
155 |
mappings = {
|
@@ -170,32 +170,24 @@ if uploaded_file is not None:
|
|
170 |
colleague = colleague.sort_values(by = 'Colleague_score', ascending = False).reset_index(drop = True)
|
171 |
other_colleague = other_colleague.sort_values(by = 'Other_colleague_score', ascending = False).reset_index(drop = True)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
st.write("## Output:")
|
178 |
-
st.write("### 1. Extracted
|
179 |
-
st.write("### 2. Derived data: Self score")
|
180 |
-
st.write("#### Dataset Table")
|
181 |
st.dataframe(df_combined)
|
182 |
|
183 |
-
st.write("###
|
184 |
-
st.write(
|
185 |
-
st.write("### 3.2 Extracted list of Weaknesses rated by Boss")
|
186 |
-
|
187 |
-
st.write(boss.tail(3))
|
188 |
-
st.write("### 4.1 Extracted list of Strengths rated by Direct Reports")
|
189 |
-
st.write(direct.head(3))
|
190 |
-
st.write("### 4.2 Extracted list of Weaknesses rated by Direct Reports")
|
191 |
-
st.write(direct.tail(3))
|
192 |
-
|
193 |
-
st.write("### 5.1 Extracted list of Strengths rated by Colleague")
|
194 |
-
st.write(colleague.head(3))
|
195 |
-
st.write("### 5.2 Extracted list of Weaknesses rated by Colleague")
|
196 |
-
st.write(colleague.tail(3))
|
197 |
-
|
198 |
-
st.write("### 6.1 Extracted list of Strengths rated by Other Colleague")
|
199 |
-
st.write(other_colleague.head(3))
|
200 |
-
st.write("### 6.2 Extracted list of Weaknesses rated by Other Colleague")
|
201 |
-
st.write(other_colleague.tail(3))
|
|
|
142 |
for item in json_output:
|
143 |
for label, phrases in item.items():
|
144 |
for phrase in phrases:
|
145 |
+
data.append({'Rater': label, 'Dimensions': phrase})
|
146 |
|
147 |
df4 = pd.DataFrame(data)
|
148 |
|
149 |
#Step 9: Converting Streangths and Weaknesses with scores into json
|
150 |
|
151 |
# Filter dataframes based on 'Label' value
|
152 |
+
boss, direct, colleague, other_colleague = [df4[df4['Rater'] == label].copy() for label in ['Boss', 'Direct', 'Colleagues', 'Colleague (o']]
|
153 |
|
154 |
# Create mapping dictionaries from df3
|
155 |
mappings = {
|
|
|
170 |
colleague = colleague.sort_values(by = 'Colleague_score', ascending = False).reset_index(drop = True)
|
171 |
other_colleague = other_colleague.sort_values(by = 'Other_colleague_score', ascending = False).reset_index(drop = True)
|
172 |
|
173 |
+
def assign_strength_weakness(df):
|
174 |
+
df['Strength/Weakness'] = np.nan
|
175 |
+
df.loc[df.index.isin([0, 1, 2]) & df['Score'].notna(), 'Strength/Weakness'] = 'S'
|
176 |
+
df.loc[df.index.isin([3, 4, 5]) & df['Score'].notna(), 'Strength/Weakness'] = 'W'
|
177 |
+
return df
|
178 |
+
|
179 |
+
# Apply the function to each DataFrame
|
180 |
+
boss = assign_strength_weakness(boss)
|
181 |
+
direct = assign_strength_weakness(direct)
|
182 |
+
colleague = assign_strength_weakness(colleague)
|
183 |
+
other_colleague = assign_strength_weakness(other_colleague)
|
184 |
+
|
185 |
+
df5 = pd.concat([boss, direct, colleague, other_colleague], axis = 0)
|
186 |
+
df5 = df5.dropna()
|
187 |
+
|
188 |
st.write("## Output:")
|
189 |
+
st.write("### 1. Extracted dataset: Dimensions, Compentency Cluster, Raters and Scores by Raters")
|
|
|
|
|
190 |
st.dataframe(df_combined)
|
191 |
|
192 |
+
st.write("### 2. Extracted list of Strengths and Weaknesses rated by each Rater")
|
193 |
+
st.write(df5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|