Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -98,8 +98,80 @@ if uploaded_file is not None:
|
|
98 |
|
99 |
df_combined['Self_score'] = df_combined.apply(calculate_self_score, axis=1)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
st.write("### Output:")
|
102 |
st.write("#### 1. Extracted data: Dimensions Assessment of the leader by: Boss, Colleagues, Colleagues (other b.), Direct reports, Customers and All Raters")
|
103 |
st.write("#### 2. Derived data: Self score")
|
104 |
st.write("### Dataset Table")
|
105 |
st.dataframe(df_combined)
|
|
|
|
98 |
|
99 |
df_combined['Self_score'] = df_combined.apply(calculate_self_score, axis=1)
|
100 |
|
101 |
+
#Step 7 : Picking strengths and weaknesses
|
102 |
+
# List of keywords/phrases to capture
|
103 |
+
keywords = [
|
104 |
+
'Integrity/ Reliability', 'Appearance', 'Enthusiasm/Passion',
|
105 |
+
'Learning Motivation/ Self-Development', 'Ability to Adapt/Flexibility',
|
106 |
+
'Communication/Information', 'Cooperation/ Team spirit',
|
107 |
+
'Handling of Complex Situations', 'Coolness/Handling of Unclear Situations', 'Self-reliance/Initiative',
|
108 |
+
'Conflict Management', 'Ability to Assert Oneself/ Negotiation Skills',
|
109 |
+
'Tact and Sensitivity', 'Quality Orientation', 'Client Orientation',
|
110 |
+
'Specialized Knowledge', 'Methodology/ Didactics/ Language',
|
111 |
+
'Creativity/ Conceptional Skills', 'Project Management',
|
112 |
+
'Result Orientation', 'Leadership Skills', 'Coach and Advisor'
|
113 |
+
]
|
114 |
+
|
115 |
+
# Extract phrases between "Topics I would like to discuss... " and "Schedule for the follow-up meeting"
|
116 |
+
phrases_pattern = r"Please use the form at the end of the section to finalize your development planning\.\s*(.*?)\s*Schedule for the follow-up meeting"
|
117 |
+
phrases_matches = re.findall(phrases_pattern, pdf_text, re.DOTALL)
|
118 |
+
|
119 |
+
# Extract the word after "The biggest strengths and room for improvements perceived by:"
|
120 |
+
label_pattern = r"The biggest strengths and room for improvements perceived by:\s*(\w+)"
|
121 |
+
labels = re.findall(label_pattern, pdf_text)
|
122 |
+
|
123 |
+
# Process each match and extract only the required keywords
|
124 |
+
json_output = []
|
125 |
+
for i, phrases_text in enumerate(phrases_matches):
|
126 |
+
extracted_phrases = [
|
127 |
+
phrase for phrase in keywords if phrase in phrases_text
|
128 |
+
]
|
129 |
+
if extracted_phrases:
|
130 |
+
label = labels[i] if i < len(labels) else f"Phrases_{i+1}"
|
131 |
+
json_output.append({label: extracted_phrases})
|
132 |
+
|
133 |
+
# Convert to JSON format
|
134 |
+
json_output_str = json.dumps(json_output, indent=2)
|
135 |
+
|
136 |
+
# Print the JSON result
|
137 |
+
#print(json_output_str)
|
138 |
+
|
139 |
+
json_data = df.to_json(orient='records')
|
140 |
+
|
141 |
+
data = []
|
142 |
+
for item in json_output:
|
143 |
+
for label, phrases in item.items():
|
144 |
+
for phrase in phrases:
|
145 |
+
data.append({'Label': label, 'Dimensions': phrase})
|
146 |
+
|
147 |
+
df4 = pd.DataFrame(data)
|
148 |
+
|
149 |
+
#Step 9: Converting Streangths and Weaknesses with scores into json
|
150 |
+
|
151 |
+
# Filter dataframes based on 'Label' value
|
152 |
+
boss, direct, colleague, other_colleague = [df4[df4['Label'] == label].copy() for label in ['Boss', 'Direct', 'Colleagues', 'Colleague (o']]
|
153 |
+
|
154 |
+
# Create mapping dictionaries from df3
|
155 |
+
mappings = {
|
156 |
+
'Boss_score': df_combined.set_index('Dimensions')['Boss_score'].to_dict(),
|
157 |
+
'Report_score': df_combined.set_index('Dimensions')['Report_score'].to_dict(),
|
158 |
+
'Colleague_score': df_combined.set_index('Dimensions')['Colleague_score'].to_dict(),
|
159 |
+
'Other_colleague_score': df_combined.set_index('Dimensions')['Colleague_other_score'].to_dict()
|
160 |
+
}
|
161 |
+
|
162 |
+
# Map the values from df3 to the appropriate DataFrames
|
163 |
+
boss['Boss_score'] = boss['Dimensions'].map(mappings['Boss_score'])
|
164 |
+
direct['Report_score'] = direct['Dimensions'].map(mappings['Report_score'])
|
165 |
+
colleague['Colleague_score'] = colleague['Dimensions'].map(mappings['Colleague_score'])
|
166 |
+
other_colleague['Other_colleague_score'] = other_colleague['Dimensions'].map(mappings['Other_colleague_score'])
|
167 |
+
|
168 |
+
boss.sort_values(by = 'Boss_score', ascending = False)
|
169 |
+
boss_json = boss.iloc[3:,1:].to_dict(orient='records')
|
170 |
+
prompt = f"You are a corporate trainer who guides me how to behave in corporate settings. You will analyze the top 3 strengths and scores{boss_json} rated by my boss out of 6. You will generate a nudge for each dimension to improveupon these strengths."
|
171 |
+
|
172 |
st.write("### Output:")
|
173 |
st.write("#### 1. Extracted data: Dimensions Assessment of the leader by: Boss, Colleagues, Colleagues (other b.), Direct reports, Customers and All Raters")
|
174 |
st.write("#### 2. Derived data: Self score")
|
175 |
st.write("### Dataset Table")
|
176 |
st.dataframe(df_combined)
|
177 |
+
st.write(f"#### {print(prompt)}")
|