Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -95,7 +95,126 @@ with gr.Blocks(title="DETR Object Detection by orYx Models") as demo:
|
|
| 95 |
output_image = gr.Image(label="Output image with predicted instances", type="pil")
|
| 96 |
|
| 97 |
gr.Examples(['https://huggingface.co/spaces/orYx-models/object-detection-facebook-ResNets/blob/main/traffic.jpg',
|
| 98 |
-
'https://huggingface.co/spaces/orYx-models/object-detection-facebook-ResNets/blob/main/flyover.jpg'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
gr.HTML("""<br/>""")
|
| 101 |
gr.HTML("""<h4 style="color:navy;">3. Then, click "Infer" button to predict object instances. It will take about 10 seconds (on cpu)</h4>""")
|
|
|
|
| 95 |
output_image = gr.Image(label="Output image with predicted instances", type="pil")
|
| 96 |
|
| 97 |
gr.Examples(['https://huggingface.co/spaces/orYx-models/object-detection-facebook-ResNets/blob/main/traffic.jpg',
|
| 98 |
+
'https://huggingface.co/spaces/orYx-models/object-detection-facebook-ResNets/blob/main/flyover.jpg'
|
| 99 |
+
|
| 100 |
+
import torch
|
| 101 |
+
from transformers import pipeline
|
| 102 |
+
|
| 103 |
+
from PIL import Image
|
| 104 |
+
|
| 105 |
+
import matplotlib.pyplot as plt
|
| 106 |
+
import matplotlib.patches as patches
|
| 107 |
+
|
| 108 |
+
from random import choice
|
| 109 |
+
import io
|
| 110 |
+
|
| 111 |
+
detector50 = pipeline(model="facebook/detr-resnet-50")
|
| 112 |
+
|
| 113 |
+
detector101 = pipeline(model="facebook/detr-resnet-101")
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
import gradio as gr
|
| 117 |
+
|
| 118 |
+
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
| 119 |
+
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
| 120 |
+
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
| 121 |
+
|
| 122 |
+
fdic = {
|
| 123 |
+
"family" : "Impact",
|
| 124 |
+
"style" : "italic",
|
| 125 |
+
"size" : 15,
|
| 126 |
+
"color" : "yellow",
|
| 127 |
+
"weight" : "bold"
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def get_figure(in_pil_img, in_results):
|
| 132 |
+
plt.figure(figsize=(16, 10))
|
| 133 |
+
plt.imshow(in_pil_img)
|
| 134 |
+
#pyplot.gcf()
|
| 135 |
+
ax = plt.gca()
|
| 136 |
+
|
| 137 |
+
for prediction in in_results:
|
| 138 |
+
selected_color = choice(COLORS)
|
| 139 |
+
|
| 140 |
+
x, y = prediction['box']['xmin'], prediction['box']['ymin'],
|
| 141 |
+
w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']
|
| 142 |
+
|
| 143 |
+
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
|
| 144 |
+
ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
|
| 145 |
+
|
| 146 |
+
plt.axis("off")
|
| 147 |
+
|
| 148 |
+
return plt.gcf()
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def infer(model, in_pil_img):
|
| 152 |
+
|
| 153 |
+
results = None
|
| 154 |
+
if model == "detr-resnet-101":
|
| 155 |
+
results = detector101(in_pil_img)
|
| 156 |
+
else:
|
| 157 |
+
results = detector50(in_pil_img)
|
| 158 |
+
|
| 159 |
+
figure = get_figure(in_pil_img, results)
|
| 160 |
+
|
| 161 |
+
buf = io.BytesIO()
|
| 162 |
+
figure.savefig(buf, bbox_inches='tight')
|
| 163 |
+
buf.seek(0)
|
| 164 |
+
output_pil_img = Image.open(buf)
|
| 165 |
+
|
| 166 |
+
return output_pil_img
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
with gr.Blocks(title= "DETR Object Detection by orYx Models") as demo:
|
| 170 |
+
gr.HTML("""
|
| 171 |
+
<style>
|
| 172 |
+
.logo {
|
| 173 |
+
position: absolute;
|
| 174 |
+
top: 10px;
|
| 175 |
+
right: 10px;
|
| 176 |
+
width: 100px; /* Adjust the width of the logo as needed */
|
| 177 |
+
height: auto;
|
| 178 |
+
}
|
| 179 |
+
</style>
|
| 180 |
+
<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">DETR Object Detection</div>
|
| 181 |
+
<img class="logo" src="https://huggingface.co/spaces/orYx-models/object-detection-facebook-ResNets/blob/main/oryx_logo%20(2).png" alt="Logo">
|
| 182 |
+
<h4 style="color:navy;">1. Select a model.</h4>
|
| 183 |
+
""")
|
| 184 |
+
|
| 185 |
+
model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name")
|
| 186 |
+
|
| 187 |
+
gr.HTML("""<br/>""")
|
| 188 |
+
gr.HTML("""<h4 style="color:navy;">Please upload an image by clicking on the canvas. </h4>""")
|
| 189 |
+
|
| 190 |
+
with gr.Row():
|
| 191 |
+
input_image = gr.Image(label="Input image", type="pil")
|
| 192 |
+
output_image = gr.Image(label="Output image with predicted instances", type="pil")
|
| 193 |
+
|
| 194 |
+
gr.Examples(['https://huggingface.co/spaces/orYx-models/object-detection-facebook-ResNets/blob/main/traffic.jpg',
|
| 195 |
+
'https://huggingface.co/spaces/orYx-models/object-detection-facebook-ResNets/blob/main/flyover.jpg',
|
| 196 |
+
https://huggingface.co/spaces/orYx-models/object-detection-facebook-ResNets/resolve/main/trees_traffic.jpg'
|
| 197 |
+
'https://huggingface.co/spaces/orYx-models/object-detection-facebook-ResNets/resolve/main/Saudi_traffic.jpg'], inputs=input_image)
|
| 198 |
+
|
| 199 |
+
gr.HTML("""<br/>""")
|
| 200 |
+
gr.HTML("""<h4 style="color:navy;">3. Then, click "Infer" button to predict object instances. It will take about 10 seconds (on cpu)</h4>""")
|
| 201 |
+
|
| 202 |
+
send_btn = gr.Button("Infer")
|
| 203 |
+
send_btn.click(fn=infer, inputs=[model, input_image], outputs=[output_image])
|
| 204 |
+
|
| 205 |
+
gr.HTML("""<br/>""")
|
| 206 |
+
gr.HTML("""<h4 style="color:navy;">Reference</h4>""")
|
| 207 |
+
gr.HTML("""<ul>""")
|
| 208 |
+
gr.HTML("""<li><a href="https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb" target="_blank">Hands-on tutorial for DETR</a>""")
|
| 209 |
+
gr.HTML("""</ul>""")
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
#demo.queue()
|
| 213 |
+
demo.launch(debug=True)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
### EOF ###
|
| 217 |
+
], inputs=input_image)
|
| 218 |
|
| 219 |
gr.HTML("""<br/>""")
|
| 220 |
gr.HTML("""<h4 style="color:navy;">3. Then, click "Infer" button to predict object instances. It will take about 10 seconds (on cpu)</h4>""")
|