Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
import tensorflow as tf
|
5 |
-
|
6 |
|
7 |
def iou(y_true, y_pred):
|
8 |
def f(y_true, y_pred):
|
@@ -22,8 +22,8 @@ def dice_coef(y_true, y_pred):
|
|
22 |
def dice_loss(y_true, y_pred):
|
23 |
return 1.0 - dice_coef(y_true, y_pred)
|
24 |
|
25 |
-
def read_image(
|
26 |
-
img = Image.open(
|
27 |
img = img.resize(target_size)
|
28 |
x = np.array(img, dtype=np.float32)
|
29 |
x = x / 255.0
|
@@ -37,25 +37,36 @@ def preprocess_image(img):
|
|
37 |
|
38 |
def predict_image(model, img):
|
39 |
pred = model.predict(img)
|
40 |
-
return pred
|
41 |
-
|
42 |
-
def visualize_prediction(img, pred):
|
43 |
-
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
44 |
-
axs[0].imshow(img)
|
45 |
-
axs[0].set_title('Original Image')
|
46 |
-
axs[1].imshow(pred[0, ...], cmap='gray') # Assuming the prediction is a mask or similar
|
47 |
-
axs[1].set_title('Predicted Image')
|
48 |
-
plt.close(fig)
|
49 |
-
return fig
|
50 |
|
51 |
-
# Load the model with custom
|
52 |
-
|
|
|
|
|
53 |
|
54 |
def process_image(image):
|
55 |
img = read_image(image)
|
56 |
img_preprocessed = preprocess_image(img)
|
57 |
-
pred = predict_image(
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
iface
|
61 |
-
iface.launch()
|
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
import tensorflow as tf
|
5 |
+
|
6 |
|
7 |
def iou(y_true, y_pred):
|
8 |
def f(y_true, y_pred):
|
|
|
22 |
def dice_loss(y_true, y_pred):
|
23 |
return 1.0 - dice_coef(y_true, y_pred)
|
24 |
|
25 |
+
def read_image(file_path, target_size=(256, 256)):
|
26 |
+
img = Image.open(file_path)
|
27 |
img = img.resize(target_size)
|
28 |
x = np.array(img, dtype=np.float32)
|
29 |
x = x / 255.0
|
|
|
37 |
|
38 |
def predict_image(model, img):
|
39 |
pred = model.predict(img)
|
40 |
+
return pred[0, ...] # Taking the first item in the batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Load the model with specific custom objects
|
43 |
+
loaded_model = tf.keras.models.load_model(
|
44 |
+
"oryx_road_segmentation_model.h5",
|
45 |
+
custom_objects={'dice_coef': dice_coef, 'iou': iou})
|
46 |
|
47 |
def process_image(image):
|
48 |
img = read_image(image)
|
49 |
img_preprocessed = preprocess_image(img)
|
50 |
+
pred = predict_image(loaded_model, img_preprocessed)
|
51 |
+
|
52 |
+
# Convert single-channel image to RGB by duplicating the channel across RGB
|
53 |
+
pred_img = np.squeeze(pred) # Remove the singleton dimension
|
54 |
+
pred_img = np.clip(pred_img, 0, 1) # Ensure all values are between 0 and 1
|
55 |
+
pred_img_rgb = np.stack((pred_img,)*3, axis=-1) # Stack grayscale across three channels to mimic RGB
|
56 |
+
pred_img_rgb = (pred_img_rgb * 255).astype(np.uint8) # Scale to 0-255 and convert to uint8
|
57 |
+
return Image.fromarray(pred_img_rgb) # Now converting a proper 2D RGB array
|
58 |
+
|
59 |
+
# Sample images directory or paths
|
60 |
+
sample_images = ["234989_sat.jpg", "259157_sat.jpg", "751359_sat.jpg","168243_sat.jpg","877873_sat.jpg","836987_sat.jpg"]
|
61 |
+
|
62 |
+
# Gradio Interface
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=process_image,
|
65 |
+
inputs=gr.Image(type="filepath"),
|
66 |
+
outputs=gr.Image(type="pil", label="Predicted Image"),
|
67 |
+
title="orYx Models' - Road Segmentation Predictor",
|
68 |
+
description="Upload an image or choose a sample and view the model's segmentation for roads on different terrains.",
|
69 |
+
examples= sample_images
|
70 |
+
)
|
71 |
|
72 |
+
iface.launch(debug=True)
|
|