Vineedhar commited on
Commit
ab71642
·
verified ·
1 Parent(s): f0ddc04

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -13,14 +13,11 @@ uploaded_file = st.file_uploader("Upload your dataset (CSV format)", type="csv")
13
 
14
  if uploaded_file is not None:
15
  # Load the dataset
16
- df = pd.read_csv(uploaded_file)
17
-
18
- st.write("### Uploaded Dataset")
19
- st.write(df)
20
 
21
  # Dynamically calculate the mean ignoring NaN values
22
  df['Average_score'] = df[['Boss_score', 'Colleague_score', 'Colleague_other_score',
23
- 'Report_score', 'Customer_score', 'All_raters_Score']].mean(axis=1, skipna=True)
24
 
25
  # Round the calculated average score to 2 decimal places
26
  df['Average_score'] = df['Average_score'].round(1)
@@ -69,7 +66,8 @@ if uploaded_file is not None:
69
  y_prob = gnb.predict_proba(X)
70
  confidence_scores = y_prob.max(axis=1)
71
  df['Confidence_score'] = confidence_scores
72
-
 
73
  st.write("### Processed Dataset")
74
  st.write(df)
75
 
 
13
 
14
  if uploaded_file is not None:
15
  # Load the dataset
16
+ df = pd.read_csv(uploaded_file, index_col=0)
 
 
 
17
 
18
  # Dynamically calculate the mean ignoring NaN values
19
  df['Average_score'] = df[['Boss_score', 'Colleague_score', 'Colleague_other_score',
20
+ 'Report_score', 'Customer_score']].mean(axis=1, skipna=True)
21
 
22
  # Round the calculated average score to 2 decimal places
23
  df['Average_score'] = df['Average_score'].round(1)
 
66
  y_prob = gnb.predict_proba(X)
67
  confidence_scores = y_prob.max(axis=1)
68
  df['Confidence_score'] = confidence_scores
69
+ df =df.drop('All_raters_Score', axis = 1)
70
+
71
  st.write("### Processed Dataset")
72
  st.write(df)
73