Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,18 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
# Load model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
model = gr.load("models/mistralai/Mistral-7B-Instruct-v0.3", provider="hf-inference")
|
5 |
|
6 |
# Bungkus dengan Gradio Interface agar bisa dikustomisasi
|
@@ -20,4 +32,14 @@ with gr.Blocks(css="""
|
|
20 |
with gr.Column():
|
21 |
model.render()
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
# Load model NER
|
5 |
+
ner_pipeline = pipeline("ner", model="d4data/biomedical-ner-all")
|
6 |
+
|
7 |
+
def extract_entities(text):
|
8 |
+
"""Fungsi untuk mengekstrak entitas medis dari teks input."""
|
9 |
+
entities = ner_pipeline(text)
|
10 |
+
results = []
|
11 |
+
for ent in entities:
|
12 |
+
results.append(f"{ent['word']} ({ent['entity']}) - Score: {ent['score']:.2f}")
|
13 |
+
return "\n".join(results) if results else "Tidak ada entitas medis yang terdeteksi."
|
14 |
+
|
15 |
+
# Load model chatbot dari Hugging Face Inference API
|
16 |
model = gr.load("models/mistralai/Mistral-7B-Instruct-v0.3", provider="hf-inference")
|
17 |
|
18 |
# Bungkus dengan Gradio Interface agar bisa dikustomisasi
|
|
|
32 |
with gr.Column():
|
33 |
model.render()
|
34 |
|
35 |
+
gr.Markdown("## 🏥 Biomedical NER (Named Entity Recognition)")
|
36 |
+
gr.Markdown("🔍 Ekstrak entitas medis dari teks yang dimasukkan.")
|
37 |
+
|
38 |
+
with gr.Row():
|
39 |
+
input_text = gr.Textbox(label="Masukkan teks medis", placeholder="Ketik teks medis di sini...")
|
40 |
+
ner_output = gr.Textbox(label="Hasil NER", interactive=False)
|
41 |
+
|
42 |
+
extract_button = gr.Button("Ekstrak Entitas Medis")
|
43 |
+
extract_button.click(extract_entities, inputs=[input_text], outputs=[ner_output])
|
44 |
+
|
45 |
demo.launch()
|