Spaces:
Running
on
Zero
Running
on
Zero
Update gradio_utils/utils.py
Browse files- gradio_utils/utils.py +4 -7
gradio_utils/utils.py
CHANGED
@@ -44,7 +44,7 @@ def adj_mx_from_edges(num_pts, skeleton, device='cpu', normalization_fix=True):
|
|
44 |
adj = adj_mx + trans_adj_mx * cond - adj_mx * cond
|
45 |
return adj
|
46 |
|
47 |
-
def plot_results(support_img, query_img,
|
48 |
skeleton=None, prediction=None, radius=6, in_color=None,
|
49 |
original_skeleton=None, img_alpha=0.6, target_keypoints=None):
|
50 |
h, w, c = support_img.shape
|
@@ -52,7 +52,7 @@ def plot_results(support_img, query_img, support_kp, support_w, query_kp, query_
|
|
52 |
if isinstance(prediction, torch.Tensor):
|
53 |
prediction = prediction.numpy()
|
54 |
if isinstance(original_skeleton, list):
|
55 |
-
original_skeleton = adj_mx_from_edges(num_pts=
|
56 |
query_img = (query_img - np.min(query_img)) / (np.max(query_img) - np.min(query_img))
|
57 |
img = query_img
|
58 |
w = query_w
|
@@ -204,12 +204,9 @@ def process(query_img, state,
|
|
204 |
support_kp = kp_src_3d
|
205 |
out = plot_results(vis_s_image,
|
206 |
vis_q_image,
|
207 |
-
support_kp,
|
208 |
vis_s_weight,
|
209 |
-
|
210 |
-
|
211 |
-
outputs['skeleton'][1],
|
212 |
-
torch.tensor(outputs['points']).squeeze().cpu(),
|
213 |
original_skeleton=state['skeleton'],
|
214 |
img_alpha=1.0,
|
215 |
)
|
|
|
44 |
adj = adj_mx + trans_adj_mx * cond - adj_mx * cond
|
45 |
return adj
|
46 |
|
47 |
+
def plot_results(support_img, query_img, query_w,
|
48 |
skeleton=None, prediction=None, radius=6, in_color=None,
|
49 |
original_skeleton=None, img_alpha=0.6, target_keypoints=None):
|
50 |
h, w, c = support_img.shape
|
|
|
52 |
if isinstance(prediction, torch.Tensor):
|
53 |
prediction = prediction.numpy()
|
54 |
if isinstance(original_skeleton, list):
|
55 |
+
original_skeleton = adj_mx_from_edges(num_pts=prediction.shape[0], skeleton=[original_skeleton]).numpy()[0]
|
56 |
query_img = (query_img - np.min(query_img)) / (np.max(query_img) - np.min(query_img))
|
57 |
img = query_img
|
58 |
w = query_w
|
|
|
204 |
support_kp = kp_src_3d
|
205 |
out = plot_results(vis_s_image,
|
206 |
vis_q_image,
|
|
|
207 |
vis_s_weight,
|
208 |
+
skeleton=outputs['skeleton'][1],
|
209 |
+
prediction=torch.tensor(outputs['points']).squeeze().cpu(),
|
|
|
|
|
210 |
original_skeleton=state['skeleton'],
|
211 |
img_alpha=1.0,
|
212 |
)
|