orhir commited on
Commit
241adf2
·
1 Parent(s): 23abb8d

Upload 97 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LICENSE +203 -0
  2. Pose_Anything_Teaser.png +0 -0
  3. README.md +145 -13
  4. app.py +320 -0
  5. configs/1shot-swin/base_split1_config.py +190 -0
  6. configs/1shot-swin/base_split2_config.py +190 -0
  7. configs/1shot-swin/base_split3_config.py +190 -0
  8. configs/1shot-swin/base_split4_config.py +190 -0
  9. configs/1shot-swin/base_split5_config.py +190 -0
  10. configs/1shot-swin/graph_split1_config.py +191 -0
  11. configs/1shot-swin/graph_split2_config.py +191 -0
  12. configs/1shot-swin/graph_split3_config.py +191 -0
  13. configs/1shot-swin/graph_split4_config.py +191 -0
  14. configs/1shot-swin/graph_split5_config.py +191 -0
  15. configs/1shots/base_split1_config.py +190 -0
  16. configs/1shots/base_split2_config.py +190 -0
  17. configs/1shots/base_split3_config.py +190 -0
  18. configs/1shots/base_split4_config.py +190 -0
  19. configs/1shots/base_split5_config.py +190 -0
  20. configs/1shots/graph_split1_config.py +191 -0
  21. configs/1shots/graph_split2_config.py +191 -0
  22. configs/1shots/graph_split3_config.py +191 -0
  23. configs/1shots/graph_split4_config.py +191 -0
  24. configs/1shots/graph_split5_config.py +191 -0
  25. configs/5shot-swin/base_split1_config.py +190 -0
  26. configs/5shot-swin/base_split2_config.py +190 -0
  27. configs/5shot-swin/base_split3_config.py +190 -0
  28. configs/5shot-swin/base_split4_config.py +190 -0
  29. configs/5shot-swin/base_split5_config.py +190 -0
  30. configs/5shot-swin/graph_split1_config.py +191 -0
  31. configs/5shot-swin/graph_split2_config.py +191 -0
  32. configs/5shot-swin/graph_split3_config.py +191 -0
  33. configs/5shot-swin/graph_split4_config.py +191 -0
  34. configs/5shot-swin/graph_split5_config.py +191 -0
  35. configs/5shots/base_split1_config.py +190 -0
  36. configs/5shots/base_split2_config.py +190 -0
  37. configs/5shots/base_split3_config.py +190 -0
  38. configs/5shots/base_split4_config.py +190 -0
  39. configs/5shots/base_split5_config.py +190 -0
  40. configs/5shots/graph_split1_config.py +191 -0
  41. configs/5shots/graph_split2_config.py +191 -0
  42. configs/5shots/graph_split3_config.py +191 -0
  43. configs/5shots/graph_split4_config.py +191 -0
  44. configs/5shots/graph_split5_config.py +191 -0
  45. configs/demo.py +194 -0
  46. configs/demo_b.py +191 -0
  47. demo.py +289 -0
  48. docker/Dockerfile +50 -0
  49. gradio_teaser.png +0 -0
  50. models/VERSION +1 -0
LICENSE ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2022 SenseTime. All Rights Reserved.
2
+
3
+ Apache License
4
+ Version 2.0, January 2004
5
+ http://www.apache.org/licenses/
6
+
7
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
8
+
9
+ 1. Definitions.
10
+
11
+ "License" shall mean the terms and conditions for use, reproduction,
12
+ and distribution as defined by Sections 1 through 9 of this document.
13
+
14
+ "Licensor" shall mean the copyright owner or entity authorized by
15
+ the copyright owner that is granting the License.
16
+
17
+ "Legal Entity" shall mean the union of the acting entity and all
18
+ other entities that control, are controlled by, or are under common
19
+ control with that entity. For the purposes of this definition,
20
+ "control" means (i) the power, direct or indirect, to cause the
21
+ direction or management of such entity, whether by contract or
22
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
23
+ outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ "You" (or "Your") shall mean an individual or Legal Entity
26
+ exercising permissions granted by this License.
27
+
28
+ "Source" form shall mean the preferred form for making modifications,
29
+ including but not limited to software source code, documentation
30
+ source, and configuration files.
31
+
32
+ "Object" form shall mean any form resulting from mechanical
33
+ transformation or translation of a Source form, including but
34
+ not limited to compiled object code, generated documentation,
35
+ and conversions to other media types.
36
+
37
+ "Work" shall mean the work of authorship, whether in Source or
38
+ Object form, made available under the License, as indicated by a
39
+ copyright notice that is included in or attached to the work
40
+ (an example is provided in the Appendix below).
41
+
42
+ "Derivative Works" shall mean any work, whether in Source or Object
43
+ form, that is based on (or derived from) the Work and for which the
44
+ editorial revisions, annotations, elaborations, or other modifications
45
+ represent, as a whole, an original work of authorship. For the purposes
46
+ of this License, Derivative Works shall not include works that remain
47
+ separable from, or merely link (or bind by name) to the interfaces of,
48
+ the Work and Derivative Works thereof.
49
+
50
+ "Contribution" shall mean any work of authorship, including
51
+ the original version of the Work and any modifications or additions
52
+ to that Work or Derivative Works thereof, that is intentionally
53
+ submitted to Licensor for inclusion in the Work by the copyright owner
54
+ or by an individual or Legal Entity authorized to submit on behalf of
55
+ the copyright owner. For the purposes of this definition, "submitted"
56
+ means any form of electronic, verbal, or written communication sent
57
+ to the Licensor or its representatives, including but not limited to
58
+ communication on electronic mailing lists, source code control systems,
59
+ and issue tracking systems that are managed by, or on behalf of, the
60
+ Licensor for the purpose of discussing and improving the Work, but
61
+ excluding communication that is conspicuously marked or otherwise
62
+ designated in writing by the copyright owner as "Not a Contribution."
63
+
64
+ "Contributor" shall mean Licensor and any individual or Legal Entity
65
+ on behalf of whom a Contribution has been received by Licensor and
66
+ subsequently incorporated within the Work.
67
+
68
+ 2. Grant of Copyright License. Subject to the terms and conditions of
69
+ this License, each Contributor hereby grants to You a perpetual,
70
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
71
+ copyright license to reproduce, prepare Derivative Works of,
72
+ publicly display, publicly perform, sublicense, and distribute the
73
+ Work and such Derivative Works in Source or Object form.
74
+
75
+ 3. Grant of Patent License. Subject to the terms and conditions of
76
+ this License, each Contributor hereby grants to You a perpetual,
77
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
78
+ (except as stated in this section) patent license to make, have made,
79
+ use, offer to sell, sell, import, and otherwise transfer the Work,
80
+ where such license applies only to those patent claims licensable
81
+ by such Contributor that are necessarily infringed by their
82
+ Contribution(s) alone or by combination of their Contribution(s)
83
+ with the Work to which such Contribution(s) was submitted. If You
84
+ institute patent litigation against any entity (including a
85
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
86
+ or a Contribution incorporated within the Work constitutes direct
87
+ or contributory patent infringement, then any patent licenses
88
+ granted to You under this License for that Work shall terminate
89
+ as of the date such litigation is filed.
90
+
91
+ 4. Redistribution. You may reproduce and distribute copies of the
92
+ Work or Derivative Works thereof in any medium, with or without
93
+ modifications, and in Source or Object form, provided that You
94
+ meet the following conditions:
95
+
96
+ (a) You must give any other recipients of the Work or
97
+ Derivative Works a copy of this License; and
98
+
99
+ (b) You must cause any modified files to carry prominent notices
100
+ stating that You changed the files; and
101
+
102
+ (c) You must retain, in the Source form of any Derivative Works
103
+ that You distribute, all copyright, patent, trademark, and
104
+ attribution notices from the Source form of the Work,
105
+ excluding those notices that do not pertain to any part of
106
+ the Derivative Works; and
107
+
108
+ (d) If the Work includes a "NOTICE" text file as part of its
109
+ distribution, then any Derivative Works that You distribute must
110
+ include a readable copy of the attribution notices contained
111
+ within such NOTICE file, excluding those notices that do not
112
+ pertain to any part of the Derivative Works, in at least one
113
+ of the following places: within a NOTICE text file distributed
114
+ as part of the Derivative Works; within the Source form or
115
+ documentation, if provided along with the Derivative Works; or,
116
+ within a display generated by the Derivative Works, if and
117
+ wherever such third-party notices normally appear. The contents
118
+ of the NOTICE file are for informational purposes only and
119
+ do not modify the License. You may add Your own attribution
120
+ notices within Derivative Works that You distribute, alongside
121
+ or as an addendum to the NOTICE text from the Work, provided
122
+ that such additional attribution notices cannot be construed
123
+ as modifying the License.
124
+
125
+ You may add Your own copyright statement to Your modifications and
126
+ may provide additional or different license terms and conditions
127
+ for use, reproduction, or distribution of Your modifications, or
128
+ for any such Derivative Works as a whole, provided Your use,
129
+ reproduction, and distribution of the Work otherwise complies with
130
+ the conditions stated in this License.
131
+
132
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
133
+ any Contribution intentionally submitted for inclusion in the Work
134
+ by You to the Licensor shall be under the terms and conditions of
135
+ this License, without any additional terms or conditions.
136
+ Notwithstanding the above, nothing herein shall supersede or modify
137
+ the terms of any separate license agreement you may have executed
138
+ with Licensor regarding such Contributions.
139
+
140
+ 6. Trademarks. This License does not grant permission to use the trade
141
+ names, trademarks, service marks, or product names of the Licensor,
142
+ except as required for reasonable and customary use in describing the
143
+ origin of the Work and reproducing the content of the NOTICE file.
144
+
145
+ 7. Disclaimer of Warranty. Unless required by applicable law or
146
+ agreed to in writing, Licensor provides the Work (and each
147
+ Contributor provides its Contributions) on an "AS IS" BASIS,
148
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
149
+ implied, including, without limitation, any warranties or conditions
150
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
151
+ PARTICULAR PURPOSE. You are solely responsible for determining the
152
+ appropriateness of using or redistributing the Work and assume any
153
+ risks associated with Your exercise of permissions under this License.
154
+
155
+ 8. Limitation of Liability. In no event and under no legal theory,
156
+ whether in tort (including negligence), contract, or otherwise,
157
+ unless required by applicable law (such as deliberate and grossly
158
+ negligent acts) or agreed to in writing, shall any Contributor be
159
+ liable to You for damages, including any direct, indirect, special,
160
+ incidental, or consequential damages of any character arising as a
161
+ result of this License or out of the use or inability to use the
162
+ Work (including but not limited to damages for loss of goodwill,
163
+ work stoppage, computer failure or malfunction, or any and all
164
+ other commercial damages or losses), even if such Contributor
165
+ has been advised of the possibility of such damages.
166
+
167
+ 9. Accepting Warranty or Additional Liability. While redistributing
168
+ the Work or Derivative Works thereof, You may choose to offer,
169
+ and charge a fee for, acceptance of support, warranty, indemnity,
170
+ or other liability obligations and/or rights consistent with this
171
+ License. However, in accepting such obligations, You may act only
172
+ on Your own behalf and on Your sole responsibility, not on behalf
173
+ of any other Contributor, and only if You agree to indemnify,
174
+ defend, and hold each Contributor harmless for any liability
175
+ incurred by, or claims asserted against, such Contributor by reason
176
+ of your accepting any such warranty or additional liability.
177
+
178
+ END OF TERMS AND CONDITIONS
179
+
180
+ APPENDIX: How to apply the Apache License to your work.
181
+
182
+ To apply the Apache License to your work, attach the following
183
+ boilerplate notice, with the fields enclosed by brackets "[]"
184
+ replaced with your own identifying information. (Don't include
185
+ the brackets!) The text should be enclosed in the appropriate
186
+ comment syntax for the file format. We also recommend that a
187
+ file or class name and description of purpose be included on the
188
+ same "printed page" as the copyright notice for easier
189
+ identification within third-party archives.
190
+
191
+ Copyright 2020 MMClassification Authors.
192
+
193
+ Licensed under the Apache License, Version 2.0 (the "License");
194
+ you may not use this file except in compliance with the License.
195
+ You may obtain a copy of the License at
196
+
197
+ http://www.apache.org/licenses/LICENSE-2.0
198
+
199
+ Unless required by applicable law or agreed to in writing, software
200
+ distributed under the License is distributed on an "AS IS" BASIS,
201
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
202
+ See the License for the specific language governing permissions and
203
+ limitations under the License.
Pose_Anything_Teaser.png ADDED
README.md CHANGED
@@ -1,13 +1,145 @@
1
- ---
2
- title: PoseAnything
3
- emoji: 🏢
4
- colorFrom: red
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 4.11.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Pose Anything: A Graph-Based Approach for Category-Agnostic Pose Estimation
2
+ <a href="https://orhir.github.io/pose-anything/"><img src="https://img.shields.io/static/v1?label=Project&message=Website&color=blue"></a>
3
+ <a href="https://arxiv.org/abs/2311.17891"><img src="https://img.shields.io/badge/arXiv-2311.17891-b31b1b.svg"></a>
4
+ <a href="https://www.apache.org/licenses/LICENSE-2.0.txt"><img src="https://img.shields.io/badge/License-Apache-yellow"></a>
5
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/pose-anything-a-graph-based-approach-for/2d-pose-estimation-on-mp-100)](https://paperswithcode.com/sota/2d-pose-estimation-on-mp-100?p=pose-anything-a-graph-based-approach-for)
6
+
7
+ By [Or Hirschorn](https://scholar.google.co.il/citations?user=GgFuT_QAAAAJ&hl=iw&oi=ao) and [Shai Avidan](https://scholar.google.co.il/citations?hl=iw&user=hpItE1QAAAAJ)
8
+
9
+ This repo is the official implementation of "[Pose Anything: A Graph-Based Approach for Category-Agnostic Pose Estimation](https://arxiv.org/pdf/2311.17891.pdf)".
10
+ <p align="center">
11
+ <img src="Pose_Anything_Teaser.png" width="384">
12
+ </p>
13
+
14
+ ## Introduction
15
+
16
+ We present a novel approach to CAPE that leverages the inherent geometrical relations between keypoints through a newly designed Graph Transformer Decoder. By capturing and incorporating this crucial structural information, our method enhances the accuracy of keypoint localization, marking a significant departure from conventional CAPE techniques that treat keypoints as isolated entities.
17
+
18
+ ## Citation
19
+ If you find this useful, please cite this work as follows:
20
+ ```bibtex
21
+ @misc{hirschorn2023pose,
22
+ title={Pose Anything: A Graph-Based Approach for Category-Agnostic Pose Estimation},
23
+ author={Or Hirschorn and Shai Avidan},
24
+ year={2023},
25
+ eprint={2311.17891},
26
+ archivePrefix={arXiv},
27
+ primaryClass={cs.CV}
28
+ }
29
+ ```
30
+
31
+ ## Getting Started
32
+
33
+ ### Docker [Recommended]
34
+ We provide a docker image for easy use.
35
+ You can simply pull the docker image from docker hub, containing all the required libraries and packages:
36
+
37
+ ```
38
+ docker pull orhir/pose_anything
39
+ docker run --name pose_anything -v {DATA_DIR}:/workspace/PoseAnything/PoseAnything/data/mp100 -it orhir/pose_anything /bin/bash
40
+ ```
41
+ ### Conda Environment
42
+ We train and evaluate our model on Python 3.8 and Pytorch 2.0.1 with CUDA 12.1.
43
+
44
+ Please first install pytorch and torchvision following official documentation Pytorch.
45
+ Then, follow [MMPose](https://mmpose.readthedocs.io/en/latest/installation.html) to install the following packages:
46
+ ```
47
+ mmcv-full=1.6.2
48
+ mmpose=0.29.0
49
+ ```
50
+ Having installed these packages, run:
51
+ ```
52
+ python setup.py develop
53
+ ```
54
+
55
+ ## Demo on Custom Images
56
+ We provide a demo code to test our code on custom images.
57
+
58
+ ***A bigger and more accurate version of the model - COMING SOON!***
59
+
60
+ ### Gradio Demo
61
+ We first require to install gradio:
62
+ ```
63
+ pip install gradio==3.44.0
64
+ ```
65
+ Then, Download the [pretrained model](https://drive.google.com/file/d/1RT1Q8AMEa1kj6k9ZqrtWIKyuR4Jn4Pqc/view?usp=drive_link) and run:
66
+ ```
67
+ python app.py --checkpoint [path_to_pretrained_ckpt]
68
+ ```
69
+ ### Terminal Demo
70
+ Download
71
+ the [pretrained model](https://drive.google.com/file/d/1RT1Q8AMEa1kj6k9ZqrtWIKyuR4Jn4Pqc/view?usp=drive_link)
72
+ and run:
73
+
74
+ ```
75
+ python demo.py --support [path_to_support_image] --query [path_to_query_image] --config configs/demo_b.py --checkpoint [path_to_pretrained_ckpt]
76
+ ```
77
+ ***Note:*** The demo code supports any config with suitable checkpoint file. More pre-trained models can be found in the evaluation section.
78
+
79
+
80
+ ## MP-100 Dataset
81
+ Please follow the [official guide](https://github.com/luminxu/Pose-for-Everything/blob/main/mp100/README.md) to prepare the MP-100 dataset for training and evaluation, and organize the data structure properly.
82
+
83
+ We provide an updated annotation file, which includes skeleton definitions, in the following [link](https://drive.google.com/drive/folders/1uRyGB-P5Tc_6TmAZ6RnOi0SWjGq9b28T?usp=sharing).
84
+
85
+ **Please note:**
86
+
87
+ Current version of the MP-100 dataset includes some discrepancies and filenames errors:
88
+ 1. Note that the mentioned DeepFasion dataset is actually DeepFashion2 dataset. The link in the official repo is wrong. Use this [repo](https://github.com/switchablenorms/DeepFashion2/tree/master) instead.
89
+ 2. We provide a script to fix CarFusion filename errors, which can be run by:
90
+ ```
91
+ python tools/fix_carfusion.py [path_to_CarFusion_dataset] [path_to_mp100_annotation]
92
+ ```
93
+
94
+ ## Training
95
+
96
+ ### Backbone Options
97
+ To use pre-trained Swin-Transformer as used in our paper, we provide the weights, taken from this [repo](https://github.com/microsoft/Swin-Transformer/blob/main/MODELHUB.md), in the following [link](https://drive.google.com/drive/folders/1-q4mSxlNAUwDlevc3Hm5Ij0l_2OGkrcg?usp=sharing).
98
+ These should be placed in the `./pretrained` folder.
99
+
100
+ We also support DINO and ResNet backbones. To use them, you can easily change the config file to use the desired backbone.
101
+ This can be done by changing the `pretrained` field in the config file to `dinov2`, `dino` or `resnet` respectively (this will automatically load the pretrained weights from the official repo).
102
+
103
+ ### Training
104
+ To train the model, run:
105
+ ```
106
+ python train.py --config [path_to_config_file] --work-dir [path_to_work_dir]
107
+ ```
108
+
109
+ ## Evaluation and Pretrained Models
110
+ You can download the pretrained checkpoints from following [link](https://drive.google.com/drive/folders/1RmrqzE3g0qYRD5xn54-aXEzrIkdYXpEW?usp=sharing).
111
+
112
+ Here we provide the evaluation results of our pretrained models on MP-100 dataset along with the config files and checkpoints:
113
+
114
+ ### 1-Shot Models
115
+ | Setting | split 1 | split 2 | split 3 | split 4 | split 5 |
116
+ |:-------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|
117
+ | Tiny | 91.06 | 88024 | 86.09 | 86.17 | 85.78 |
118
+ | | [link](https://drive.google.com/file/d/1GubmkVkqybs-eD4hiRkgBzkUVGE_rIFX/view?usp=drive_link) / [config](configs/1shots/graph_split1_config.py) | [link](https://drive.google.com/file/d/1EEekDF3xV_wJOVk7sCQWUA8ygUKzEm2l/view?usp=drive_link) / [config](configs/1shots/graph_split2_config.py) | [link](https://drive.google.com/file/d/1FuwpNBdPI3mfSovta2fDGKoqJynEXPZQ/view?usp=drive_link) / [config](configs/1shots/graph_split3_config.py) | [link](https://drive.google.com/file/d/1_SSqSANuZlbC0utzIfzvZihAW9clefcR/view?usp=drive_link) / [config](configs/1shots/graph_split4_config.py) | [link](https://drive.google.com/file/d/1nUHr07W5F55u-FKQEPFq_CECgWZOKKLF/view?usp=drive_link) / [config](configs/1shots/graph_split5_config.py) |
119
+ | Small | 93.66 | 90.42 | 89.79 | 88.68 | 89.61 |
120
+ | | [link](https://drive.google.com/file/d/1RT1Q8AMEa1kj6k9ZqrtWIKyuR4Jn4Pqc/view?usp=drive_link) / [config](configs/1shot-swin/graph_split1_config.py) | [link](https://drive.google.com/file/d/1BT5b8MlnkflcdhTFiBROIQR3HccLsPQd/view?usp=drive_link) / [config](configs/1shot-swin/graph_split2_config.py) | [link](https://drive.google.com/file/d/1Z64cw_1CSDGObabSAWKnMK0BA_bqDHxn/view?usp=drive_link) / [config](configs/1shot-swin/graph_split3_config.py) | [link](https://drive.google.com/file/d/1vf82S8LAjIzpuBcbEoDCa26cR8DqNriy/view?usp=drive_link) / [config](configs/1shot-swin/graph_split4_config.py) | [link](https://drive.google.com/file/d/14FNx0JNbkS2CvXQMiuMU_kMZKFGO2rDV/view?usp=drive_link) / [config](configs/1shot-swin/graph_split5_config.py) |
121
+
122
+ ### 5-Shot Models
123
+ | Setting | split 1 | split 2 | split 3 | split 4 | split 5 |
124
+ |:-------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|
125
+ | Tiny | 94.18 | 91.46 | 90.50 | 90.18 | 89.47 |
126
+ | | [link](https://drive.google.com/file/d/1PeMuwv5YwiF3UCE5oN01Qchu5K3BaQ9L/view?usp=drive_link) / [config](configs/5shots/graph_split1_config.py) | [link](https://drive.google.com/file/d/1enIapPU1D8lZOET7q_qEjnhC1HFy3jWK/view?usp=drive_link) / [config](configs/5shots/graph_split2_config.py) | [link](https://drive.google.com/file/d/1MTeZ9Ba-ucLuqX0KBoLbBD5PaEct7VUp/view?usp=drive_link) / [config](configs/5shots/graph_split3_config.py) | [link](https://drive.google.com/file/d/1U2N7DI2F0v7NTnPCEEAgx-WKeBZNAFoa/view?usp=drive_link) / [config](configs/5shots/graph_split4_config.py) | [link](https://drive.google.com/file/d/1wapJDgtBWtmz61JNY7ktsFyvckRKiR2C/view?usp=drive_link) / [config](configs/5shots/graph_split5_config.py) |
127
+ | Small | 96.51 | 92.15 | 91.99 | 92.01 | 92.36 |
128
+ | | [link](https://drive.google.com/file/d/1p5rnA0MhmndSKEbyXMk49QXvNE03QV2p/view?usp=drive_link) / [config](configs/5shot-swin/graph_split1_config.py) | [link](https://drive.google.com/file/d/1Q3KNyUW_Gp3JytYxUPhkvXFiDYF6Hv8w/view?usp=drive_link) / [config](configs/5shot-swin/graph_split2_config.py) | [link](https://drive.google.com/file/d/1gWgTk720fSdAf_ze1FkfXTW0t7k-69dV/view?usp=drive_link) / [config](configs/5shot-swin/graph_split3_config.py) | [link](https://drive.google.com/file/d/1LuaRQ8a6AUPrkr7l5j2W6Fe_QbgASkwY/view?usp=drive_link) / [config](configs/5shot-swin/graph_split4_config.py) | [link](https://drive.google.com/file/d/1z--MAOPCwMG_GQXru9h2EStbnIvtHv1L/view?usp=drive_link) / [config](configs/5shot-swin/graph_split5_config.py) |
129
+
130
+ ### Evaluation
131
+ The evaluation on a single GPU will take approximately 30 min.
132
+
133
+ To evaluate the pretrained model, run:
134
+ ```
135
+ python test.py [path_to_config_file] [path_to_pretrained_ckpt]
136
+ ```
137
+ ## Acknowledgement
138
+
139
+ Our code is based on code from:
140
+ - [MMPose](https://github.com/open-mmlab/mmpose)
141
+ - [CapeFormer](https://github.com/flyinglynx/CapeFormer)
142
+
143
+
144
+ ## License
145
+ This project is released under the Apache 2.0 license.
app.py ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ # Copyright (c) OpenMMLab. All rights reserved.
3
+ import os
4
+ import random
5
+
6
+ # os.system('python -m pip install timm')
7
+ # os.system('python -m pip install -U openxlab')
8
+ # os.system('python -m pip install -U pillow')
9
+ # os.system('python -m pip install Openmim')
10
+ # os.system('python -m mim install mmengine')
11
+ os.system('python -m mim install "mmcv-full==1.6.2"')
12
+ os.system('python -m mim install "mmpose==0.29.0"')
13
+ os.system('python -m mim install "gradio==3.44.0"')
14
+ os.system('python setup.py develop')
15
+
16
+ import gradio as gr
17
+ import numpy as np
18
+ import torch
19
+ from PIL import ImageDraw, Image
20
+ from matplotlib import pyplot as plt
21
+ from mmcv import Config
22
+ from mmcv.runner import load_checkpoint
23
+ from mmpose.core import wrap_fp16_model
24
+ from mmpose.models import build_posenet
25
+ from torchvision import transforms
26
+ from demo import Resize_Pad
27
+ from models import *
28
+ import matplotlib
29
+
30
+ matplotlib.use('agg')
31
+
32
+
33
+ def plot_results(support_img, query_img, support_kp, support_w, query_kp,
34
+ query_w, skeleton,
35
+ initial_proposals, prediction, radius=6):
36
+ h, w, c = support_img.shape
37
+ prediction = prediction[-1].cpu().numpy() * h
38
+ query_img = (query_img - np.min(query_img)) / (
39
+ np.max(query_img) - np.min(query_img))
40
+ for id, (img, w, keypoint) in enumerate(zip([query_img],
41
+ [query_w],
42
+ [prediction])):
43
+ f, axes = plt.subplots()
44
+ plt.imshow(img)
45
+ for k in range(keypoint.shape[0]):
46
+ if w[k] > 0:
47
+ kp = keypoint[k, :2]
48
+ c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6)
49
+ patch = plt.Circle(kp, radius, color=c)
50
+ axes.add_patch(patch)
51
+ axes.text(kp[0], kp[1], k)
52
+ plt.draw()
53
+ for l, limb in enumerate(skeleton):
54
+ kp = keypoint[:, :2]
55
+ if l > len(COLORS) - 1:
56
+ c = [x / 255 for x in random.sample(range(0, 255), 3)]
57
+ else:
58
+ c = [x / 255 for x in COLORS[l]]
59
+ if w[limb[0]] > 0 and w[limb[1]] > 0:
60
+ patch = plt.Line2D([kp[limb[0], 0], kp[limb[1], 0]],
61
+ [kp[limb[0], 1], kp[limb[1], 1]],
62
+ linewidth=6, color=c, alpha=0.6)
63
+ axes.add_artist(patch)
64
+ plt.axis('off') # command for hiding the axis.
65
+ plt.subplots_adjust(0, 0, 1, 1, 0, 0)
66
+ return plt
67
+
68
+
69
+ COLORS = [
70
+ [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
71
+ [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
72
+ [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255],
73
+ [255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]
74
+ ]
75
+
76
+ kp_src = []
77
+ skeleton = []
78
+ count = 0
79
+ color_idx = 0
80
+ prev_pt = None
81
+ prev_pt_idx = None
82
+ prev_clicked = None
83
+ original_support_image = None
84
+ checkpoint_path = ''
85
+
86
+ def process(query_img,
87
+ cfg_path='configs/demo_b.py'):
88
+ global skeleton
89
+ cfg = Config.fromfile(cfg_path)
90
+ kp_src_np = np.array(kp_src).copy().astype(np.float32)
91
+ kp_src_np[:, 0] = kp_src_np[:, 0] / 128. * cfg.model.encoder_config.img_size
92
+ kp_src_np[:, 1] = kp_src_np[:, 1] / 128. * cfg.model.encoder_config.img_size
93
+ kp_src_np = np.flip(kp_src_np, 1).copy()
94
+ kp_src_tensor = torch.tensor(kp_src_np).float()
95
+ preprocess = transforms.Compose([
96
+ transforms.ToTensor(),
97
+ transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
98
+ Resize_Pad(cfg.model.encoder_config.img_size,
99
+ cfg.model.encoder_config.img_size)])
100
+
101
+ if len(skeleton) == 0:
102
+ skeleton = [(0, 0)]
103
+
104
+ support_img = preprocess(original_support_image).flip(0)[None]
105
+ np_query = np.array(query_img)[:, :, ::-1].copy()
106
+ q_img = preprocess(np_query).flip(0)[None]
107
+ # Create heatmap from keypoints
108
+ genHeatMap = TopDownGenerateTargetFewShot()
109
+ data_cfg = cfg.data_cfg
110
+ data_cfg['image_size'] = np.array([cfg.model.encoder_config.img_size,
111
+ cfg.model.encoder_config.img_size])
112
+ data_cfg['joint_weights'] = None
113
+ data_cfg['use_different_joint_weights'] = False
114
+ kp_src_3d = torch.concatenate(
115
+ (kp_src_tensor, torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
116
+ kp_src_3d_weight = torch.concatenate(
117
+ (torch.ones_like(kp_src_tensor),
118
+ torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
119
+ target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg,
120
+ kp_src_3d,
121
+ kp_src_3d_weight,
122
+ sigma=1)
123
+ target_s = torch.tensor(target_s).float()[None]
124
+ target_weight_s = torch.ones_like(
125
+ torch.tensor(target_weight_s).float()[None])
126
+
127
+ data = {
128
+ 'img_s': [support_img],
129
+ 'img_q': q_img,
130
+ 'target_s': [target_s],
131
+ 'target_weight_s': [target_weight_s],
132
+ 'target_q': None,
133
+ 'target_weight_q': None,
134
+ 'return_loss': False,
135
+ 'img_metas': [{'sample_skeleton': [skeleton],
136
+ 'query_skeleton': skeleton,
137
+ 'sample_joints_3d': [kp_src_3d],
138
+ 'query_joints_3d': kp_src_3d,
139
+ 'sample_center': [kp_src_tensor.mean(dim=0)],
140
+ 'query_center': kp_src_tensor.mean(dim=0),
141
+ 'sample_scale': [
142
+ kp_src_tensor.max(dim=0)[0] -
143
+ kp_src_tensor.min(dim=0)[0]],
144
+ 'query_scale': kp_src_tensor.max(dim=0)[0] -
145
+ kp_src_tensor.min(dim=0)[0],
146
+ 'sample_rotation': [0],
147
+ 'query_rotation': 0,
148
+ 'sample_bbox_score': [1],
149
+ 'query_bbox_score': 1,
150
+ 'query_image_file': '',
151
+ 'sample_image_file': [''],
152
+ }]
153
+ }
154
+ # Load model
155
+ model = build_posenet(cfg.model)
156
+ fp16_cfg = cfg.get('fp16', None)
157
+ if fp16_cfg is not None:
158
+ wrap_fp16_model(model)
159
+ load_checkpoint(model, checkpoint_path, map_location='cpu')
160
+ model.eval()
161
+ with torch.no_grad():
162
+ outputs = model(**data)
163
+ # visualize results
164
+ vis_s_weight = target_weight_s[0]
165
+ vis_q_weight = target_weight_s[0]
166
+ vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
167
+ vis_q_image = q_img[0].detach().cpu().numpy().transpose(1, 2, 0)
168
+ support_kp = kp_src_3d
169
+ out = plot_results(vis_s_image,
170
+ vis_q_image,
171
+ support_kp,
172
+ vis_s_weight,
173
+ None,
174
+ vis_q_weight,
175
+ skeleton,
176
+ None,
177
+ torch.tensor(outputs['points']).squeeze(0),
178
+ )
179
+ return out
180
+
181
+
182
+ with gr.Blocks() as demo:
183
+ gr.Markdown('''
184
+ # Pose Anything Demo
185
+ We present a novel approach to category agnostic pose estimation that leverages the inherent geometrical relations between keypoints through a newly designed Graph Transformer Decoder. By capturing and incorporating this crucial structural information, our method enhances the accuracy of keypoint localization, marking a significant departure from conventional CAPE techniques that treat keypoints as isolated entities.
186
+ ### [Paper](https://arxiv.org/abs/2311.17891) | [Official Repo](https://github.com/orhir/PoseAnything)
187
+ ![](/file=gradio_teaser.png)
188
+ ## Instructions
189
+ 1. Upload an image of the object you want to pose on the **left** image.
190
+ 2. Click on the **left** image to mark keypoints.
191
+ 3. Click on the keypoints on the **right** image to mark limbs.
192
+ 4. Upload an image of the object you want to pose to the query image (**bottom**).
193
+ 5. Click **Evaluate** to pose the query image.
194
+ ''')
195
+ with gr.Row():
196
+ support_img = gr.Image(label="Support Image",
197
+ type="pil",
198
+ info='Click to mark keypoints').style(
199
+ height=256, width=256)
200
+ posed_support = gr.Image(label="Posed Support Image",
201
+ type="pil",
202
+ interactive=False).style(height=256, width=256)
203
+ with gr.Row():
204
+ query_img = gr.Image(label="Query Image",
205
+ type="pil").style(height=256, width=256)
206
+ with gr.Row():
207
+ eval_btn = gr.Button(value="Evaluate")
208
+ with gr.Row():
209
+ output_img = gr.Plot(label="Output Image", height=256, width=256)
210
+
211
+
212
+ def get_select_coords(kp_support,
213
+ limb_support,
214
+ evt: gr.SelectData,
215
+ r=0.015):
216
+ pixels_in_queue = set()
217
+ pixels_in_queue.add((evt.index[1], evt.index[0]))
218
+ while len(pixels_in_queue) > 0:
219
+ pixel = pixels_in_queue.pop()
220
+ if pixel[0] is not None and pixel[
221
+ 1] is not None and pixel not in kp_src:
222
+ kp_src.append(pixel)
223
+ else:
224
+ print("Invalid pixel")
225
+ if limb_support is None:
226
+ canvas_limb = kp_support
227
+ else:
228
+ canvas_limb = limb_support
229
+ canvas_kp = kp_support
230
+ w, h = canvas_kp.size
231
+ draw_pose = ImageDraw.Draw(canvas_kp)
232
+ draw_limb = ImageDraw.Draw(canvas_limb)
233
+ r = int(r * w)
234
+ leftUpPoint = (pixel[1] - r, pixel[0] - r)
235
+ rightDownPoint = (pixel[1] + r, pixel[0] + r)
236
+ twoPointList = [leftUpPoint, rightDownPoint]
237
+ draw_pose.ellipse(twoPointList, fill=(255, 0, 0, 255))
238
+ draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
239
+
240
+ return canvas_kp, canvas_limb
241
+
242
+
243
+ def get_limbs(kp_support,
244
+ evt: gr.SelectData,
245
+ r=0.02, width=0.02):
246
+ global count, color_idx, prev_pt, skeleton, prev_pt_idx, prev_clicked
247
+ curr_pixel = (evt.index[1], evt.index[0])
248
+ pixels_in_queue = set()
249
+ pixels_in_queue.add((evt.index[1], evt.index[0]))
250
+ canvas_kp = kp_support
251
+ w, h = canvas_kp.size
252
+ r = int(r * w)
253
+ width = int(width * w)
254
+ while (len(pixels_in_queue) > 0 and
255
+ curr_pixel != prev_clicked and
256
+ len(kp_src) > 0):
257
+ pixel = pixels_in_queue.pop()
258
+ prev_clicked = pixel
259
+ closest_point = min(kp_src,
260
+ key=lambda p: (p[0] - pixel[0]) ** 2 +
261
+ (p[1] - pixel[1]) ** 2)
262
+ closest_point_index = kp_src.index(closest_point)
263
+ draw_limb = ImageDraw.Draw(canvas_kp)
264
+ if color_idx < len(COLORS):
265
+ c = COLORS[color_idx]
266
+ else:
267
+ c = random.choices(range(256), k=3)
268
+ leftUpPoint = (closest_point[1] - r, closest_point[0] - r)
269
+ rightDownPoint = (closest_point[1] + r, closest_point[0] + r)
270
+ twoPointList = [leftUpPoint, rightDownPoint]
271
+ draw_limb.ellipse(twoPointList, fill=tuple(c))
272
+ if count == 0:
273
+ prev_pt = closest_point[1], closest_point[0]
274
+ prev_pt_idx = closest_point_index
275
+ count = count + 1
276
+ else:
277
+ if prev_pt_idx != closest_point_index:
278
+ # Create Line and add Limb
279
+ draw_limb.line([prev_pt, (closest_point[1], closest_point[0])],
280
+ fill=tuple(c),
281
+ width=width)
282
+ skeleton.append((prev_pt_idx, closest_point_index))
283
+ color_idx = color_idx + 1
284
+ else:
285
+ draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
286
+ count = 0
287
+ return canvas_kp
288
+
289
+
290
+ def set_query(support_img):
291
+ global original_support_image
292
+ skeleton.clear()
293
+ kp_src.clear()
294
+ original_support_image = np.array(support_img)[:, :, ::-1].copy()
295
+ support_img = support_img.resize((128, 128), Image.Resampling.LANCZOS)
296
+ return support_img, support_img
297
+
298
+
299
+ support_img.select(get_select_coords,
300
+ [support_img, posed_support],
301
+ [support_img, posed_support],
302
+ )
303
+ support_img.upload(set_query,
304
+ inputs=support_img,
305
+ outputs=[support_img,posed_support])
306
+ posed_support.select(get_limbs,
307
+ posed_support,
308
+ posed_support)
309
+ eval_btn.click(fn=process,
310
+ inputs=[query_img],
311
+ outputs=output_img)
312
+
313
+ if __name__ == "__main__":
314
+ parser = argparse.ArgumentParser(description='Pose Anything Demo')
315
+ parser.add_argument('--checkpoint',
316
+ help='checkpoint path',
317
+ default='https://huggingface.co/orhir/PoseAnything/blob/main/1shot-swin_graph_split1.pth')
318
+ args = parser.parse_args()
319
+ checkpoint_path = args.checkpoint
320
+ demo.launch()
configs/1shot-swin/base_split1_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split1_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shot-swin/base_split2_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split2_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split2_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split2_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shot-swin/base_split3_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split3_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split3_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split3_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shot-swin/base_split4_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split4_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split4_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split4_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shot-swin/base_split5_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split5_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split5_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split5_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shot-swin/graph_split1_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split1_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/1shot-swin/graph_split2_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split2_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split2_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split2_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/1shot-swin/graph_split3_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split3_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split3_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split3_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/1shot-swin/graph_split4_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split4_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split4_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split4_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/1shot-swin/graph_split5_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split5_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split5_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split5_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/1shots/base_split1_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+ heatmap_loss_weight=2.0,
81
+ support_order_dropout=-1,
82
+ positional_encoding=dict(
83
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
84
+
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=16,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split1_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shots/base_split2_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=16,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split2_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split2_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split2_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shots/base_split3_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=16,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split3_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split3_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split3_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shots/base_split4_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=16,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split4_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split4_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split4_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shots/base_split5_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=16,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split5_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=1,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split5_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=1,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split5_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=1,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/1shots/graph_split1_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=16,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split1_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/1shots/graph_split2_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=16,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split2_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split2_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split2_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/1shots/graph_split3_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=16,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split3_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split3_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split3_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/1shots/graph_split4_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=16,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split4_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split4_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split4_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/1shots/graph_split5_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=16,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split5_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split5_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split5_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/base_split1_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split1_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/base_split2_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split2_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split2_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split2_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/base_split3_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split3_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split3_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split3_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/base_split4_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split4_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split4_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split4_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/base_split5_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1024,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[224, 224],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split5_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split5_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split5_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/graph_split1_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split1_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/graph_split2_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split2_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split2_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split2_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/graph_split3_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split3_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split3_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split3_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/graph_split4_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split4_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split4_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split4_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shot-swin/graph_split5_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_base_22k_500k.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split5_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split5_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split5_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shots/base_split1_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split1_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shots/base_split2_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split2_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split2_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split2_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shots/base_split3_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split3_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split3_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split3_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shots/base_split4_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split4_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split4_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split4_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shots/base_split5_config.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=768,
71
+ dropout=0.1,
72
+ similarity_proj_dim=256,
73
+ dynamic_proj_dim=128,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+
81
+ heatmap_loss_weight=2.0,
82
+ support_order_dropout=-1,
83
+ positional_encoding=dict(
84
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
85
+ # training and testing settings
86
+ train_cfg=dict(),
87
+ test_cfg=dict(
88
+ flip_test=False,
89
+ post_process='default',
90
+ shift_heatmap=True,
91
+ modulate_kernel=11))
92
+
93
+ data_cfg = dict(
94
+ image_size=[256, 256],
95
+ heatmap_size=[64, 64],
96
+ num_output_channels=channel_cfg['num_output_channels'],
97
+ num_joints=channel_cfg['dataset_joints'],
98
+ dataset_channel=channel_cfg['dataset_channel'],
99
+ inference_channel=channel_cfg['inference_channel'])
100
+
101
+ train_pipeline = [
102
+ dict(type='LoadImageFromFile'),
103
+ dict(
104
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
105
+ scale_factor=0.15),
106
+ dict(type='TopDownAffineFewShot'),
107
+ dict(type='ToTensor'),
108
+ dict(
109
+ type='NormalizeTensor',
110
+ mean=[0.485, 0.456, 0.406],
111
+ std=[0.229, 0.224, 0.225]),
112
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
113
+ dict(
114
+ type='Collect',
115
+ keys=['img', 'target', 'target_weight'],
116
+ meta_keys=[
117
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
118
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
119
+ ]),
120
+ ]
121
+
122
+ valid_pipeline = [
123
+ dict(type='LoadImageFromFile'),
124
+ dict(type='TopDownAffineFewShot'),
125
+ dict(type='ToTensor'),
126
+ dict(
127
+ type='NormalizeTensor',
128
+ mean=[0.485, 0.456, 0.406],
129
+ std=[0.229, 0.224, 0.225]),
130
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
131
+ dict(
132
+ type='Collect',
133
+ keys=['img', 'target', 'target_weight'],
134
+ meta_keys=[
135
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
136
+ 'flip_pairs', 'category_id',
137
+ 'skeleton',
138
+ ]),
139
+ ]
140
+
141
+ test_pipeline = valid_pipeline
142
+
143
+ data_root = 'data/mp100'
144
+ data = dict(
145
+ samples_per_gpu=8,
146
+ workers_per_gpu=8,
147
+ train=dict(
148
+ type='TransformerPoseDataset',
149
+ ann_file=f'{data_root}/annotations/mp100_split5_train.json',
150
+ img_prefix=f'{data_root}/images/',
151
+ # img_prefix=f'{data_root}',
152
+ data_cfg=data_cfg,
153
+ valid_class_ids=None,
154
+ max_kpt_num=channel_cfg['max_kpt_num'],
155
+ num_shots=5,
156
+ pipeline=train_pipeline),
157
+ val=dict(
158
+ type='TransformerPoseDataset',
159
+ ann_file=f'{data_root}/annotations/mp100_split5_val.json',
160
+ img_prefix=f'{data_root}/images/',
161
+ # img_prefix=f'{data_root}',
162
+ data_cfg=data_cfg,
163
+ valid_class_ids=None,
164
+ max_kpt_num=channel_cfg['max_kpt_num'],
165
+ num_shots=5,
166
+ num_queries=15,
167
+ num_episodes=100,
168
+ pipeline=valid_pipeline),
169
+ test=dict(
170
+ type='TestPoseDataset',
171
+ ann_file=f'{data_root}/annotations/mp100_split5_test.json',
172
+ img_prefix=f'{data_root}/images/',
173
+ # img_prefix=f'{data_root}',
174
+ data_cfg=data_cfg,
175
+ valid_class_ids=None,
176
+ max_kpt_num=channel_cfg['max_kpt_num'],
177
+ num_shots=5,
178
+ num_queries=15,
179
+ num_episodes=200,
180
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
181
+ pipeline=test_pipeline),
182
+ )
183
+ vis_backends = [
184
+ dict(type='LocalVisBackend'),
185
+ dict(type='TensorboardVisBackend'),
186
+ ]
187
+ visualizer = dict(
188
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
189
+
190
+ shuffle_cfg = dict(interval=1)
configs/5shots/graph_split1_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split1_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shots/graph_split2_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split2_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split2_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split2_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shots/graph_split3_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split3_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split3_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split3_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shots/graph_split4_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split4_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split4_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split4_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/5shots/graph_split5_config.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=96,
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[3, 6, 12, 24],
56
+ window_size=16,
57
+ drop_path_rate=0.2,
58
+ img_size=256,
59
+ upsample="bilinear"
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=768,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=768,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[256, 256],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split5_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=5,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split5_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=5,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split5_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=5,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
configs/demo.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='TransformerPoseTwoStage',
50
+ pretrained='swinv2_large',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=192,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[6, 12, 24, 48],
56
+ window_size=16,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.2,
59
+ img_size=256,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='TwoStageHead',
63
+ in_channels=1536,
64
+ transformer=dict(
65
+ type='TwoStageSupportRefineTransformer',
66
+ d_model=384,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ dim_feedforward=1536,
71
+ dropout=0.1,
72
+ similarity_proj_dim=384,
73
+ dynamic_proj_dim=192,
74
+ activation="relu",
75
+ normalize_before=False,
76
+ return_intermediate_dec=True),
77
+ share_kpt_branch=False,
78
+ num_decoder_layer=3,
79
+ with_heatmap_loss=True,
80
+ support_pos_embed=False,
81
+ heatmap_loss_weight=2.0,
82
+ skeleton_loss_weight=0.02,
83
+ num_samples=0,
84
+ support_embedding_type="fixed",
85
+ num_support=100,
86
+ support_order_dropout=-1,
87
+ positional_encoding=dict(
88
+ type='SinePositionalEncoding', num_feats=192, normalize=True)),
89
+ # training and testing settings
90
+ train_cfg=dict(),
91
+ test_cfg=dict(
92
+ flip_test=False,
93
+ post_process='default',
94
+ shift_heatmap=True,
95
+ modulate_kernel=11))
96
+
97
+ data_cfg = dict(
98
+ image_size=[256, 256],
99
+ heatmap_size=[64, 64],
100
+ num_output_channels=channel_cfg['num_output_channels'],
101
+ num_joints=channel_cfg['dataset_joints'],
102
+ dataset_channel=channel_cfg['dataset_channel'],
103
+ inference_channel=channel_cfg['inference_channel'])
104
+
105
+ train_pipeline = [
106
+ dict(type='LoadImageFromFile'),
107
+ dict(
108
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
109
+ scale_factor=0.15),
110
+ dict(type='TopDownAffineFewShot'),
111
+ dict(type='ToTensor'),
112
+ dict(
113
+ type='NormalizeTensor',
114
+ mean=[0.485, 0.456, 0.406],
115
+ std=[0.229, 0.224, 0.225]),
116
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
117
+ dict(
118
+ type='Collect',
119
+ keys=['img', 'target', 'target_weight'],
120
+ meta_keys=[
121
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
122
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
123
+ ]),
124
+ ]
125
+
126
+ valid_pipeline = [
127
+ dict(type='LoadImageFromFile'),
128
+ dict(type='TopDownAffineFewShot'),
129
+ dict(type='ToTensor'),
130
+ dict(
131
+ type='NormalizeTensor',
132
+ mean=[0.485, 0.456, 0.406],
133
+ std=[0.229, 0.224, 0.225]),
134
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
135
+ dict(
136
+ type='Collect',
137
+ keys=['img', 'target', 'target_weight'],
138
+ meta_keys=[
139
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
140
+ 'flip_pairs', 'category_id',
141
+ 'skeleton',
142
+ ]),
143
+ ]
144
+
145
+ test_pipeline = valid_pipeline
146
+
147
+ data_root = 'data/mp100'
148
+ data = dict(
149
+ samples_per_gpu=8,
150
+ workers_per_gpu=8,
151
+ train=dict(
152
+ type='TransformerPoseDataset',
153
+ ann_file=f'{data_root}/annotations/mp100_all.json',
154
+ img_prefix=f'{data_root}/images/',
155
+ # img_prefix=f'{data_root}',
156
+ data_cfg=data_cfg,
157
+ valid_class_ids=None,
158
+ max_kpt_num=channel_cfg['max_kpt_num'],
159
+ num_shots=1,
160
+ pipeline=train_pipeline),
161
+ val=dict(
162
+ type='TransformerPoseDataset',
163
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
164
+ img_prefix=f'{data_root}/images/',
165
+ # img_prefix=f'{data_root}',
166
+ data_cfg=data_cfg,
167
+ valid_class_ids=None,
168
+ max_kpt_num=channel_cfg['max_kpt_num'],
169
+ num_shots=1,
170
+ num_queries=15,
171
+ num_episodes=100,
172
+ pipeline=valid_pipeline),
173
+ test=dict(
174
+ type='TestPoseDataset',
175
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
176
+ img_prefix=f'{data_root}/images/',
177
+ # img_prefix=f'{data_root}',
178
+ data_cfg=data_cfg,
179
+ valid_class_ids=None,
180
+ max_kpt_num=channel_cfg['max_kpt_num'],
181
+ num_shots=1,
182
+ num_queries=15,
183
+ num_episodes=200,
184
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
185
+ pipeline=test_pipeline),
186
+ )
187
+ vis_backends = [
188
+ dict(type='LocalVisBackend'),
189
+ dict(type='TensorboardVisBackend'),
190
+ ]
191
+ visualizer = dict(
192
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
193
+
194
+ shuffle_cfg = dict(interval=1)
configs/demo_b.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_level = 'INFO'
2
+ load_from = None
3
+ resume_from = None
4
+ dist_params = dict(backend='nccl')
5
+ workflow = [('train', 1)]
6
+ checkpoint_config = dict(interval=20)
7
+ evaluation = dict(
8
+ interval=25,
9
+ metric=['PCK', 'NME', 'AUC', 'EPE'],
10
+ key_indicator='PCK',
11
+ gpu_collect=True,
12
+ res_folder='')
13
+ optimizer = dict(
14
+ type='Adam',
15
+ lr=1e-5,
16
+ )
17
+
18
+ optimizer_config = dict(grad_clip=None)
19
+ # learning policy
20
+ lr_config = dict(
21
+ policy='step',
22
+ warmup='linear',
23
+ warmup_iters=1000,
24
+ warmup_ratio=0.001,
25
+ step=[160, 180])
26
+ total_epochs = 200
27
+ log_config = dict(
28
+ interval=50,
29
+ hooks=[
30
+ dict(type='TextLoggerHook'),
31
+ dict(type='TensorboardLoggerHook')
32
+ ])
33
+
34
+ channel_cfg = dict(
35
+ num_output_channels=1,
36
+ dataset_joints=1,
37
+ dataset_channel=[
38
+ [
39
+ 0,
40
+ ],
41
+ ],
42
+ inference_channel=[
43
+ 0,
44
+ ],
45
+ max_kpt_num=100)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='PoseAnythingModel',
50
+ pretrained='swinv2_base',
51
+ encoder_config=dict(
52
+ type='SwinTransformerV2',
53
+ embed_dim=128,
54
+ depths=[2, 2, 18, 2],
55
+ num_heads=[4, 8, 16, 32],
56
+ window_size=14,
57
+ pretrained_window_sizes=[12, 12, 12, 6],
58
+ drop_path_rate=0.1,
59
+ img_size=224,
60
+ ),
61
+ keypoint_head=dict(
62
+ type='PoseHead',
63
+ in_channels=1024,
64
+ transformer=dict(
65
+ type='EncoderDecoder',
66
+ d_model=256,
67
+ nhead=8,
68
+ num_encoder_layers=3,
69
+ num_decoder_layers=3,
70
+ graph_decoder='pre',
71
+ dim_feedforward=1024,
72
+ dropout=0.1,
73
+ similarity_proj_dim=256,
74
+ dynamic_proj_dim=128,
75
+ activation="relu",
76
+ normalize_before=False,
77
+ return_intermediate_dec=True),
78
+ share_kpt_branch=False,
79
+ num_decoder_layer=3,
80
+ with_heatmap_loss=True,
81
+
82
+ heatmap_loss_weight=2.0,
83
+ support_order_dropout=-1,
84
+ positional_encoding=dict(
85
+ type='SinePositionalEncoding', num_feats=128, normalize=True)),
86
+ # training and testing settings
87
+ train_cfg=dict(),
88
+ test_cfg=dict(
89
+ flip_test=False,
90
+ post_process='default',
91
+ shift_heatmap=True,
92
+ modulate_kernel=11))
93
+
94
+ data_cfg = dict(
95
+ image_size=[224, 224],
96
+ heatmap_size=[64, 64],
97
+ num_output_channels=channel_cfg['num_output_channels'],
98
+ num_joints=channel_cfg['dataset_joints'],
99
+ dataset_channel=channel_cfg['dataset_channel'],
100
+ inference_channel=channel_cfg['inference_channel'])
101
+
102
+ train_pipeline = [
103
+ dict(type='LoadImageFromFile'),
104
+ dict(
105
+ type='TopDownGetRandomScaleRotation', rot_factor=15,
106
+ scale_factor=0.15),
107
+ dict(type='TopDownAffineFewShot'),
108
+ dict(type='ToTensor'),
109
+ dict(
110
+ type='NormalizeTensor',
111
+ mean=[0.485, 0.456, 0.406],
112
+ std=[0.229, 0.224, 0.225]),
113
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
114
+ dict(
115
+ type='Collect',
116
+ keys=['img', 'target', 'target_weight'],
117
+ meta_keys=[
118
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
119
+ 'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
120
+ ]),
121
+ ]
122
+
123
+ valid_pipeline = [
124
+ dict(type='LoadImageFromFile'),
125
+ dict(type='TopDownAffineFewShot'),
126
+ dict(type='ToTensor'),
127
+ dict(
128
+ type='NormalizeTensor',
129
+ mean=[0.485, 0.456, 0.406],
130
+ std=[0.229, 0.224, 0.225]),
131
+ dict(type='TopDownGenerateTargetFewShot', sigma=1),
132
+ dict(
133
+ type='Collect',
134
+ keys=['img', 'target', 'target_weight'],
135
+ meta_keys=[
136
+ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
137
+ 'flip_pairs', 'category_id',
138
+ 'skeleton',
139
+ ]),
140
+ ]
141
+
142
+ test_pipeline = valid_pipeline
143
+
144
+ data_root = 'data/mp100'
145
+ data = dict(
146
+ samples_per_gpu=8,
147
+ workers_per_gpu=8,
148
+ train=dict(
149
+ type='TransformerPoseDataset',
150
+ ann_file=f'{data_root}/annotations/mp100_split1_train.json',
151
+ img_prefix=f'{data_root}/images/',
152
+ # img_prefix=f'{data_root}',
153
+ data_cfg=data_cfg,
154
+ valid_class_ids=None,
155
+ max_kpt_num=channel_cfg['max_kpt_num'],
156
+ num_shots=1,
157
+ pipeline=train_pipeline),
158
+ val=dict(
159
+ type='TransformerPoseDataset',
160
+ ann_file=f'{data_root}/annotations/mp100_split1_val.json',
161
+ img_prefix=f'{data_root}/images/',
162
+ # img_prefix=f'{data_root}',
163
+ data_cfg=data_cfg,
164
+ valid_class_ids=None,
165
+ max_kpt_num=channel_cfg['max_kpt_num'],
166
+ num_shots=1,
167
+ num_queries=15,
168
+ num_episodes=100,
169
+ pipeline=valid_pipeline),
170
+ test=dict(
171
+ type='TestPoseDataset',
172
+ ann_file=f'{data_root}/annotations/mp100_split1_test.json',
173
+ img_prefix=f'{data_root}/images/',
174
+ # img_prefix=f'{data_root}',
175
+ data_cfg=data_cfg,
176
+ valid_class_ids=None,
177
+ max_kpt_num=channel_cfg['max_kpt_num'],
178
+ num_shots=1,
179
+ num_queries=15,
180
+ num_episodes=200,
181
+ pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
182
+ pipeline=test_pipeline),
183
+ )
184
+ vis_backends = [
185
+ dict(type='LocalVisBackend'),
186
+ dict(type='TensorboardVisBackend'),
187
+ ]
188
+ visualizer = dict(
189
+ type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
190
+
191
+ shuffle_cfg = dict(interval=1)
demo.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import copy
3
+ import os
4
+ import pickle
5
+ import random
6
+ import cv2
7
+ import numpy as np
8
+ import torch
9
+ from mmcv import Config, DictAction
10
+ from mmcv.cnn import fuse_conv_bn
11
+ from mmcv.runner import load_checkpoint
12
+ from mmpose.core import wrap_fp16_model
13
+ from mmpose.models import build_posenet
14
+ from torchvision import transforms
15
+ from models import *
16
+ import torchvision.transforms.functional as F
17
+
18
+ from tools.visualization import plot_results
19
+
20
+ COLORS = [
21
+ [255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
22
+ [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
23
+ [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255],
24
+ [255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]]
25
+
26
+ class Resize_Pad:
27
+ def __init__(self, w=256, h=256):
28
+ self.w = w
29
+ self.h = h
30
+
31
+ def __call__(self, image):
32
+ _, w_1, h_1 = image.shape
33
+ ratio_1 = w_1 / h_1
34
+ # check if the original and final aspect ratios are the same within a margin
35
+ if round(ratio_1, 2) != 1:
36
+ # padding to preserve aspect ratio
37
+ if ratio_1 > 1: # Make the image higher
38
+ hp = int(w_1 - h_1)
39
+ hp = hp // 2
40
+ image = F.pad(image, (hp, 0, hp, 0), 0, "constant")
41
+ return F.resize(image, [self.h, self.w])
42
+ else:
43
+ wp = int(h_1 - w_1)
44
+ wp = wp // 2
45
+ image = F.pad(image, (0, wp, 0, wp), 0, "constant")
46
+ return F.resize(image, [self.h, self.w])
47
+ else:
48
+ return F.resize(image, [self.h, self.w])
49
+
50
+
51
+ def transform_keypoints_to_pad_and_resize(keypoints, image_size):
52
+ trans_keypoints = keypoints.clone()
53
+ h, w = image_size[:2]
54
+ ratio_1 = w / h
55
+ if ratio_1 > 1:
56
+ # width is bigger than height - pad height
57
+ hp = int(w - h)
58
+ hp = hp // 2
59
+ trans_keypoints[:, 1] = keypoints[:, 1] + hp
60
+ trans_keypoints *= (256. / w)
61
+ else:
62
+ # height is bigger than width - pad width
63
+ wp = int(image_size[1] - image_size[0])
64
+ wp = wp // 2
65
+ trans_keypoints[:, 0] = keypoints[:, 0] + wp
66
+ trans_keypoints *= (256. / h)
67
+ return trans_keypoints
68
+
69
+
70
+ def parse_args():
71
+ parser = argparse.ArgumentParser(description='Pose Anything Demo')
72
+ parser.add_argument('--support', help='Image file')
73
+ parser.add_argument('--query', help='Image file')
74
+ parser.add_argument('--config', default=None, help='test config file path')
75
+ parser.add_argument('--checkpoint', default=None, help='checkpoint file')
76
+ parser.add_argument('--outdir', default='output', help='checkpoint file')
77
+
78
+ parser.add_argument(
79
+ '--fuse-conv-bn',
80
+ action='store_true',
81
+ help='Whether to fuse conv and bn, this will slightly increase'
82
+ 'the inference speed')
83
+ parser.add_argument(
84
+ '--cfg-options',
85
+ nargs='+',
86
+ action=DictAction,
87
+ default={},
88
+ help='override some settings in the used config, the key-value pair '
89
+ 'in xxx=yyy format will be merged into config file. For example, '
90
+ "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
91
+ args = parser.parse_args()
92
+ return args
93
+
94
+
95
+ def merge_configs(cfg1, cfg2):
96
+ # Merge cfg2 into cfg1
97
+ # Overwrite cfg1 if repeated, ignore if value is None.
98
+ cfg1 = {} if cfg1 is None else cfg1.copy()
99
+ cfg2 = {} if cfg2 is None else cfg2
100
+ for k, v in cfg2.items():
101
+ if v:
102
+ cfg1[k] = v
103
+ return cfg1
104
+
105
+
106
+ def main():
107
+ random.seed(0)
108
+ np.random.seed(0)
109
+ torch.manual_seed(0)
110
+
111
+ args = parse_args()
112
+ cfg = Config.fromfile(args.config)
113
+
114
+ if args.cfg_options is not None:
115
+ cfg.merge_from_dict(args.cfg_options)
116
+ # set cudnn_benchmark
117
+ if cfg.get('cudnn_benchmark', False):
118
+ torch.backends.cudnn.benchmark = True
119
+ cfg.data.test.test_mode = True
120
+
121
+ os.makedirs(args.outdir, exist_ok=True)
122
+
123
+ # Load data
124
+ support_img = cv2.imread(args.support)
125
+ query_img = cv2.imread(args.query)
126
+ if support_img is None or query_img is None:
127
+ raise ValueError('Fail to read images')
128
+
129
+ preprocess = transforms.Compose([
130
+ transforms.ToTensor(),
131
+ Resize_Pad(cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size)])
132
+
133
+ # frame = copy.deepcopy(support_img)
134
+ padded_support_img = preprocess(support_img).cpu().numpy().transpose(1, 2, 0) * 255
135
+ frame = copy.deepcopy(padded_support_img.astype(np.uint8).copy())
136
+ kp_src = []
137
+ skeleton = []
138
+ count = 0
139
+ prev_pt = None
140
+ prev_pt_idx = None
141
+ color_idx = 0
142
+
143
+ def selectKP(event, x, y, flags, param):
144
+ nonlocal kp_src, frame
145
+ # if we are in points selection mode, the mouse was clicked,
146
+ # list of points with the (x, y) location of the click
147
+ # and draw the circle
148
+
149
+ if event == cv2.EVENT_LBUTTONDOWN:
150
+ kp_src.append((x, y))
151
+ cv2.circle(frame, (x, y), 2, (0, 0, 255), 1)
152
+ cv2.imshow("Source", frame)
153
+
154
+ if event == cv2.EVENT_RBUTTONDOWN:
155
+ kp_src = []
156
+ frame = copy.deepcopy(support_img)
157
+ cv2.imshow("Source", frame)
158
+
159
+ def draw_line(event, x, y, flags, param):
160
+ nonlocal skeleton, kp_src, frame, count, prev_pt, prev_pt_idx, marked_frame, color_idx
161
+ if event == cv2.EVENT_LBUTTONDOWN:
162
+ closest_point = min(kp_src, key=lambda p: (p[0] - x) ** 2 + (p[1] - y) ** 2)
163
+ closest_point_index = kp_src.index(closest_point)
164
+ if color_idx < len(COLORS):
165
+ c = COLORS[color_idx]
166
+ else:
167
+ c = random.choices(range(256), k=3)
168
+ color = color_idx
169
+ cv2.circle(frame, closest_point, 2, c, 1)
170
+ if count == 0:
171
+ prev_pt = closest_point
172
+ prev_pt_idx = closest_point_index
173
+ count = count + 1
174
+ cv2.imshow("Source", frame)
175
+ else:
176
+ cv2.line(frame, prev_pt, closest_point, c, 2)
177
+ cv2.imshow("Source", frame)
178
+ count = 0
179
+ skeleton.append((prev_pt_idx, closest_point_index))
180
+ color_idx = color_idx + 1
181
+ elif event == cv2.EVENT_RBUTTONDOWN:
182
+ frame = copy.deepcopy(marked_frame)
183
+ cv2.imshow("Source", frame)
184
+ count = 0
185
+ color_idx = 0
186
+ skeleton = []
187
+ prev_pt = None
188
+
189
+ cv2.namedWindow("Source", cv2.WINDOW_NORMAL)
190
+ cv2.resizeWindow('Source', 800, 600)
191
+ cv2.setMouseCallback("Source", selectKP)
192
+ cv2.imshow("Source", frame)
193
+
194
+ # keep looping until points have been selected
195
+ print('Press any key when finished marking the points!! ')
196
+ while True:
197
+ if cv2.waitKey(1) > 0:
198
+ break
199
+
200
+ marked_frame = copy.deepcopy(frame)
201
+ cv2.setMouseCallback("Source", draw_line)
202
+ print('Press any key when finished creating skeleton!!')
203
+ while True:
204
+ if cv2.waitKey(1) > 0:
205
+ break
206
+
207
+ cv2.destroyAllWindows()
208
+ kp_src = torch.tensor(kp_src).float()
209
+ preprocess = transforms.Compose([
210
+ transforms.ToTensor(),
211
+ transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
212
+ Resize_Pad(cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size)])
213
+
214
+ if len(skeleton) == 0:
215
+ skeleton = [(0, 0)]
216
+
217
+ support_img = preprocess(support_img).flip(0)[None]
218
+ query_img = preprocess(query_img).flip(0)[None]
219
+ # Create heatmap from keypoints
220
+ genHeatMap = TopDownGenerateTargetFewShot()
221
+ data_cfg = cfg.data_cfg
222
+ data_cfg['image_size'] = np.array([cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size])
223
+ data_cfg['joint_weights'] = None
224
+ data_cfg['use_different_joint_weights'] = False
225
+ kp_src_3d = torch.concatenate((kp_src, torch.zeros(kp_src.shape[0], 1)), dim=-1)
226
+ kp_src_3d_weight = torch.concatenate((torch.ones_like(kp_src), torch.zeros(kp_src.shape[0], 1)), dim=-1)
227
+ target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg, kp_src_3d, kp_src_3d_weight, sigma=1)
228
+ target_s = torch.tensor(target_s).float()[None]
229
+ target_weight_s = torch.tensor(target_weight_s).float()[None]
230
+
231
+ data = {
232
+ 'img_s': [support_img],
233
+ 'img_q': query_img,
234
+ 'target_s': [target_s],
235
+ 'target_weight_s': [target_weight_s],
236
+ 'target_q': None,
237
+ 'target_weight_q': None,
238
+ 'return_loss': False,
239
+ 'img_metas': [{'sample_skeleton': [skeleton],
240
+ 'query_skeleton': skeleton,
241
+ 'sample_joints_3d': [kp_src_3d],
242
+ 'query_joints_3d': kp_src_3d,
243
+ 'sample_center': [kp_src.mean(dim=0)],
244
+ 'query_center': kp_src.mean(dim=0),
245
+ 'sample_scale': [kp_src.max(dim=0)[0] - kp_src.min(dim=0)[0]],
246
+ 'query_scale': kp_src.max(dim=0)[0] - kp_src.min(dim=0)[0],
247
+ 'sample_rotation': [0],
248
+ 'query_rotation': 0,
249
+ 'sample_bbox_score': [1],
250
+ 'query_bbox_score': 1,
251
+ 'query_image_file': '',
252
+ 'sample_image_file': [''],
253
+ }]
254
+ }
255
+
256
+ # Load model
257
+ model = build_posenet(cfg.model)
258
+ fp16_cfg = cfg.get('fp16', None)
259
+ if fp16_cfg is not None:
260
+ wrap_fp16_model(model)
261
+ load_checkpoint(model, args.checkpoint, map_location='cpu')
262
+ if args.fuse_conv_bn:
263
+ model = fuse_conv_bn(model)
264
+ model.eval()
265
+
266
+ with torch.no_grad():
267
+ outputs = model(**data)
268
+
269
+ # visualize results
270
+ vis_s_weight = target_weight_s[0]
271
+ vis_q_weight = target_weight_s[0]
272
+ vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
273
+ vis_q_image = query_img[0].detach().cpu().numpy().transpose(1, 2, 0)
274
+ support_kp = kp_src_3d
275
+
276
+ plot_results(vis_s_image,
277
+ vis_q_image,
278
+ support_kp,
279
+ vis_s_weight,
280
+ None,
281
+ vis_q_weight,
282
+ skeleton,
283
+ None,
284
+ torch.tensor(outputs['points']).squeeze(0),
285
+ out_dir=args.outdir)
286
+
287
+
288
+ if __name__ == '__main__':
289
+ main()
docker/Dockerfile ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ARG PYTORCH="2.0.1"
2
+ ARG CUDA="11.7"
3
+ ARG CUDNN="8"
4
+
5
+ FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
6
+
7
+ ENV TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0+PTX"
8
+ ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all"
9
+ ENV CMAKE_PREFIX_PATH="$(dirname $(which conda))/../"
10
+ ENV TZ=Asia/Kolkata DEBIAN_FRONTEND=noninteractive
11
+ # To fix GPG key error when running apt-get update
12
+ RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub
13
+ RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
14
+
15
+ RUN apt-get update && apt-get install -y git ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 libgl1-mesa-glx\
16
+ && apt-get clean \
17
+ && rm -rf /var/lib/apt/lists/*
18
+
19
+ # Install xtcocotools
20
+ RUN pip install cython
21
+ RUN pip install xtcocotools
22
+ # Install MMEngine and MMCV
23
+ RUN pip install openmim
24
+ RUN mim install mmengine
25
+ RUN mim install "mmpose==0.28.1"
26
+ RUN mim install "mmcv-full==1.5.3"
27
+ RUN pip install -U torchmetrics timm
28
+ RUN pip install numpy scipy --upgrade
29
+ RUN pip install future tensorboard
30
+
31
+ WORKDIR PoseAnything
32
+
33
+ COPY models PoseAnything/models
34
+ COPY configs PoseAnything/configs
35
+ COPY pretrained PoseAnything/pretrained
36
+ COPY requirements.txt PoseAnything/
37
+ COPY tools PoseAnything/tools
38
+ COPY setup.cfg PoseAnything/
39
+ COPY setup.py PoseAnything/
40
+ COPY test.py PoseAnything/
41
+ COPY train.py PoseAnything/
42
+ COPY README.md PoseAnything/
43
+
44
+ RUN mkdir -p PoseAnything/data/mp100
45
+ WORKDIR PoseAnything
46
+
47
+ # Install MMPose
48
+ RUN conda clean --all
49
+ ENV FORCE_CUDA="1"
50
+ RUN python setup.py develop
gradio_teaser.png ADDED
models/VERSION ADDED
@@ -0,0 +1 @@
 
 
1
+ 0.2.0