Spaces:
Sleeping
Sleeping
oscarwang2
commited on
Commit
•
15939d8
1
Parent(s):
ddecd6a
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,10 @@ import os
|
|
3 |
import gradio as gr
|
4 |
import threading
|
5 |
import time
|
6 |
-
from
|
7 |
|
8 |
-
# Initialize
|
9 |
-
client =
|
10 |
|
11 |
# Constants
|
12 |
MAX_SIZE = 1.1 * 1024 * 1024 * 1024 # 1.1GB in bytes
|
@@ -37,52 +37,28 @@ def generate_and_save_data():
|
|
37 |
while True:
|
38 |
try:
|
39 |
# Generate a prompt
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
{
|
44 |
-
"role": "user",
|
45 |
-
"content": "give me a single prompt to prompt an ai model, simulating what users could want from you. ensure that it is diverse and high quality. for each, choose a random writing style (though it has to be a common one), random length and random clarity of the prompt. ensure that it is a single prompt, and just the prompt itself, nothing else. eg, don't close the prompt in quotation marks or say Here is a single prompt that meets your requirements or anything similar to that"
|
46 |
-
}
|
47 |
-
],
|
48 |
-
temperature=1,
|
49 |
max_tokens=1024,
|
|
|
50 |
top_p=1,
|
51 |
-
|
52 |
-
stop=None,
|
53 |
)
|
54 |
-
|
55 |
-
|
56 |
-
prompt_tokens = 0
|
57 |
-
for chunk in completion:
|
58 |
-
content = chunk.choices[0].delta.content
|
59 |
-
if content:
|
60 |
-
prompt += content
|
61 |
-
prompt_tokens += len(content.split())
|
62 |
|
63 |
# Use the generated prompt to query the model again
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
{
|
68 |
-
"role": "user",
|
69 |
-
"content": prompt
|
70 |
-
}
|
71 |
-
],
|
72 |
-
temperature=1,
|
73 |
max_tokens=5000,
|
|
|
74 |
top_p=1,
|
75 |
-
|
76 |
-
stop=None,
|
77 |
)
|
78 |
-
|
79 |
-
|
80 |
-
response_tokens = 0
|
81 |
-
for chunk in second_completion:
|
82 |
-
content = chunk.choices[0].delta.content
|
83 |
-
if content:
|
84 |
-
response += content
|
85 |
-
response_tokens += len(content.split())
|
86 |
|
87 |
# Update the combined token count
|
88 |
combined_tokens += (prompt_tokens + response_tokens)
|
@@ -100,12 +76,10 @@ def generate_and_save_data():
|
|
100 |
current_file = os.path.join(DATA_DIRECTORY, f'data{file_index}.csv')
|
101 |
file_paths.append(current_file)
|
102 |
# Create the new file with headers
|
103 |
-
|
104 |
-
data.to_csv(f, header=True, index=False)
|
105 |
else:
|
106 |
# Append data to the current file
|
107 |
-
|
108 |
-
data.to_csv(f, header=False, index=False)
|
109 |
|
110 |
# Wait for the next update interval
|
111 |
time.sleep(UPDATE_INTERVAL)
|
|
|
3 |
import gradio as gr
|
4 |
import threading
|
5 |
import time
|
6 |
+
from gradio_client import Client
|
7 |
|
8 |
+
# Initialize Gradio client
|
9 |
+
client = Client("Nymbo/Llama-3.1-405B-Instruct")
|
10 |
|
11 |
# Constants
|
12 |
MAX_SIZE = 1.1 * 1024 * 1024 * 1024 # 1.1GB in bytes
|
|
|
37 |
while True:
|
38 |
try:
|
39 |
# Generate a prompt
|
40 |
+
prompt_result = client.predict(
|
41 |
+
message="give me a single prompt to prompt an ai model, simulating what users could want from you. ensure that it is diverse and high quality. for each, choose a random writing style (though it has to be a common one), random length and random clarity of the prompt. ensure that it is a single prompt, and just the prompt itself, nothing else. eg, don't close the prompt in quotation marks or say Here is a single prompt that meets your requirements or anything similar to that",
|
42 |
+
system_message="",
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
max_tokens=1024,
|
44 |
+
temperature=1,
|
45 |
top_p=1,
|
46 |
+
api_name="/chat"
|
|
|
47 |
)
|
48 |
+
prompt = prompt_result['message']
|
49 |
+
prompt_tokens = len(prompt.split())
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Use the generated prompt to query the model again
|
52 |
+
response_result = client.predict(
|
53 |
+
message=prompt,
|
54 |
+
system_message="",
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
max_tokens=5000,
|
56 |
+
temperature=1,
|
57 |
top_p=1,
|
58 |
+
api_name="/chat"
|
|
|
59 |
)
|
60 |
+
response = response_result['message']
|
61 |
+
response_tokens = len(response.split())
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# Update the combined token count
|
64 |
combined_tokens += (prompt_tokens + response_tokens)
|
|
|
76 |
current_file = os.path.join(DATA_DIRECTORY, f'data{file_index}.csv')
|
77 |
file_paths.append(current_file)
|
78 |
# Create the new file with headers
|
79 |
+
data.to_csv(current_file, index=False)
|
|
|
80 |
else:
|
81 |
# Append data to the current file
|
82 |
+
data.to_csv(current_file, mode='a', header=False, index=False)
|
|
|
83 |
|
84 |
# Wait for the next update interval
|
85 |
time.sleep(UPDATE_INTERVAL)
|