Spaces:
Running
on
Zero
Running
on
Zero
oweller2
commited on
Commit
·
00588f0
1
Parent(s):
8aa9a18
working without async
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
import sys
|
2 |
import warnings
|
3 |
import spaces
|
4 |
-
import asyncio
|
5 |
from threading import Thread
|
6 |
-
from transformers import
|
7 |
from functools import partial
|
8 |
|
9 |
import gradio as gr
|
10 |
import torch
|
11 |
import numpy as np
|
12 |
from model import Rank1
|
|
|
13 |
|
14 |
print(f"NumPy version: {np.__version__}")
|
15 |
print(f"PyTorch version: {torch.__version__}")
|
@@ -18,22 +18,102 @@ print(f"PyTorch version: {torch.__version__}")
|
|
18 |
warnings.filterwarnings("ignore", category=UserWarning, message="Can't initialize NVML")
|
19 |
|
20 |
@spaces.GPU
|
21 |
-
|
22 |
"""Process input through the reranker and return formatted outputs."""
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Example inputs
|
39 |
examples = [
|
|
|
1 |
import sys
|
2 |
import warnings
|
3 |
import spaces
|
|
|
4 |
from threading import Thread
|
5 |
+
from transformers import TextIteratorStreamer
|
6 |
from functools import partial
|
7 |
|
8 |
import gradio as gr
|
9 |
import torch
|
10 |
import numpy as np
|
11 |
from model import Rank1
|
12 |
+
import math
|
13 |
|
14 |
print(f"NumPy version: {np.__version__}")
|
15 |
print(f"PyTorch version: {torch.__version__}")
|
|
|
18 |
warnings.filterwarnings("ignore", category=UserWarning, message="Can't initialize NVML")
|
19 |
|
20 |
@spaces.GPU
|
21 |
+
def process_input(query: str, passage: str, stream: bool = True) -> tuple[str, str, str]:
|
22 |
"""Process input through the reranker and return formatted outputs."""
|
23 |
+
reranker = Rank1(model_name_or_path="orionweller/rank1-32b-awq")
|
24 |
+
prompt = f"Determine if the following passage is relevant to the query. Answer only with 'true' or 'false'.\n" \
|
25 |
+
f"Query: {query}\n" \
|
26 |
+
f"Passage: {passage}\n" \
|
27 |
+
"<think>"
|
28 |
+
|
29 |
+
reranker.model = reranker.model.to("cuda")
|
30 |
+
inputs = reranker.tokenizer(
|
31 |
+
prompt,
|
32 |
+
return_tensors="pt",
|
33 |
+
truncation=True,
|
34 |
+
max_length=reranker.context_size
|
35 |
+
).to("cuda")
|
36 |
+
|
37 |
+
if stream:
|
38 |
+
streamer = TextIteratorStreamer(
|
39 |
+
reranker.tokenizer,
|
40 |
+
skip_prompt=True,
|
41 |
+
skip_special_tokens=True
|
42 |
+
)
|
43 |
+
|
44 |
+
current_text = "<think>"
|
45 |
+
generation_output = None
|
46 |
+
|
47 |
+
def generate_with_output():
|
48 |
+
nonlocal generation_output
|
49 |
+
generation_output = reranker.model.generate(
|
50 |
+
**inputs,
|
51 |
+
generation_config=reranker.generation_config,
|
52 |
+
stopping_criteria=reranker.stopping_criteria,
|
53 |
+
return_dict_in_generate=True,
|
54 |
+
output_scores=True,
|
55 |
+
streamer=streamer
|
56 |
+
)
|
57 |
+
|
58 |
+
thread = Thread(target=generate_with_output)
|
59 |
+
thread.start()
|
60 |
+
|
61 |
+
# Stream tokens as they're generated
|
62 |
+
for new_text in streamer:
|
63 |
+
current_text += new_text
|
64 |
+
yield (
|
65 |
+
"Processing...",
|
66 |
+
"Processing...",
|
67 |
+
current_text
|
68 |
+
)
|
69 |
+
|
70 |
+
thread.join()
|
71 |
+
|
72 |
+
# Add the stopping sequence and calculate final scores
|
73 |
+
current_text += "\n" + reranker.stopping_criteria[0].matched_sequence
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
final_scores = generation_output.scores[-1][0]
|
77 |
+
true_logit = final_scores[reranker.true_token].item()
|
78 |
+
false_logit = final_scores[reranker.false_token].item()
|
79 |
+
true_score = math.exp(true_logit)
|
80 |
+
false_score = math.exp(false_logit)
|
81 |
+
score = true_score / (true_score + false_score)
|
82 |
+
|
83 |
+
yield (
|
84 |
+
score > 0.5,
|
85 |
+
score,
|
86 |
+
current_text
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
# Non-streaming mode
|
90 |
+
with torch.no_grad():
|
91 |
+
outputs = reranker.model.generate(
|
92 |
+
**inputs,
|
93 |
+
generation_config=reranker.generation_config,
|
94 |
+
stopping_criteria=reranker.stopping_criteria,
|
95 |
+
return_dict_in_generate=True,
|
96 |
+
output_scores=True
|
97 |
+
)
|
98 |
+
|
99 |
+
# Get final score from generation outputs
|
100 |
+
final_scores = outputs.scores[-1][0] # Get logits from last position
|
101 |
+
true_logit = final_scores[reranker.true_token].item()
|
102 |
+
false_logit = final_scores[reranker.false_token].item()
|
103 |
+
true_score = math.exp(true_logit)
|
104 |
+
false_score = math.exp(false_logit)
|
105 |
+
score = true_score / (true_score + false_score)
|
106 |
+
|
107 |
+
# only decode the generated text
|
108 |
+
new_text = outputs.sequences[0][len(inputs.input_ids[0]):]
|
109 |
+
decoded_input = reranker.tokenizer.decode(new_text)
|
110 |
+
output_reasoning = "<think>\n" + decoded_input.strip() + f"\n</think> {'true' if score > 0.5 else 'false'}"
|
111 |
+
|
112 |
+
yield (
|
113 |
+
"Relevant" if score > 0.5 else "Not Relevant",
|
114 |
+
f"{score:.2%}",
|
115 |
+
output_reasoning
|
116 |
+
)
|
117 |
|
118 |
# Example inputs
|
119 |
examples = [
|
model.py
CHANGED
@@ -3,7 +3,7 @@ from __future__ import annotations
|
|
3 |
import logging
|
4 |
import math
|
5 |
import torch
|
6 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer,
|
7 |
from transformers import StoppingCriteria, StoppingCriteriaList
|
8 |
from transformers import AwqConfig, AutoModelForCausalLM
|
9 |
from threading import Thread
|
@@ -80,103 +80,3 @@ class Rank1:
|
|
80 |
eos_token_id=self.tokenizer.eos_token_id,
|
81 |
stopping_sequences=["</think> true", "</think> false"]
|
82 |
)
|
83 |
-
|
84 |
-
def predict(self, query: str, passage: str, stream: bool = False):
|
85 |
-
"""Predict relevance of passage to query."""
|
86 |
-
prompt = f"Determine if the following passage is relevant to the query. Answer only with 'true' or 'false'.\n" \
|
87 |
-
f"Query: {query}\n" \
|
88 |
-
f"Passage: {passage}\n" \
|
89 |
-
"<think>"
|
90 |
-
|
91 |
-
self.model = self.model.to("cuda")
|
92 |
-
inputs = self.tokenizer(
|
93 |
-
prompt,
|
94 |
-
return_tensors="pt",
|
95 |
-
truncation=True,
|
96 |
-
max_length=self.context_size
|
97 |
-
).to("cuda")
|
98 |
-
|
99 |
-
if stream:
|
100 |
-
streamer = TextIteratorStreamer(
|
101 |
-
self.tokenizer,
|
102 |
-
skip_prompt=True,
|
103 |
-
skip_special_tokens=True
|
104 |
-
)
|
105 |
-
|
106 |
-
current_text = "<think>"
|
107 |
-
generation_output = None
|
108 |
-
|
109 |
-
def generate_with_output():
|
110 |
-
nonlocal generation_output
|
111 |
-
generation_output = self.model.generate(
|
112 |
-
**inputs,
|
113 |
-
generation_config=self.generation_config,
|
114 |
-
stopping_criteria=self.stopping_criteria,
|
115 |
-
return_dict_in_generate=True,
|
116 |
-
output_scores=True,
|
117 |
-
streamer=streamer
|
118 |
-
)
|
119 |
-
|
120 |
-
thread = Thread(target=generate_with_output)
|
121 |
-
thread.start()
|
122 |
-
|
123 |
-
# Stream tokens as they're generated
|
124 |
-
for new_text in streamer:
|
125 |
-
current_text += new_text
|
126 |
-
yield {
|
127 |
-
"is_relevant": None,
|
128 |
-
"confidence_score": None,
|
129 |
-
"model_reasoning": current_text
|
130 |
-
}
|
131 |
-
|
132 |
-
thread.join()
|
133 |
-
|
134 |
-
# Add the stopping sequence and calculate final scores
|
135 |
-
current_text += "\n" + self.stopping_criteria[0].matched_sequence
|
136 |
-
|
137 |
-
with torch.no_grad():
|
138 |
-
final_scores = generation_output.scores[-1][0]
|
139 |
-
true_logit = final_scores[self.true_token].item()
|
140 |
-
false_logit = final_scores[self.false_token].item()
|
141 |
-
true_score = math.exp(true_logit)
|
142 |
-
false_score = math.exp(false_logit)
|
143 |
-
score = true_score / (true_score + false_score)
|
144 |
-
|
145 |
-
yield {
|
146 |
-
"is_relevant": score > 0.5,
|
147 |
-
"confidence_score": score,
|
148 |
-
"model_reasoning": current_text
|
149 |
-
}
|
150 |
-
else:
|
151 |
-
# Non-streaming mode
|
152 |
-
with torch.no_grad():
|
153 |
-
outputs = self.model.generate(
|
154 |
-
**inputs,
|
155 |
-
generation_config=self.generation_config,
|
156 |
-
stopping_criteria=self.stopping_criteria,
|
157 |
-
return_dict_in_generate=True,
|
158 |
-
output_scores=True
|
159 |
-
)
|
160 |
-
|
161 |
-
# Get final score from generation outputs
|
162 |
-
final_scores = outputs.scores[-1][0] # Get logits from last position
|
163 |
-
true_logit = final_scores[self.true_token].item()
|
164 |
-
false_logit = final_scores[self.false_token].item()
|
165 |
-
true_score = math.exp(true_logit)
|
166 |
-
false_score = math.exp(false_logit)
|
167 |
-
score = true_score / (true_score + false_score)
|
168 |
-
|
169 |
-
# only decode the generated text
|
170 |
-
new_text = outputs.sequences[0][len(inputs.input_ids[0]):]
|
171 |
-
decoded_input = self.tokenizer.decode(new_text)
|
172 |
-
output_reasoning = "<think>\n" + decoded_input.strip() + f"\n</think> {'true' if score > 0.5 else 'false'}"
|
173 |
-
|
174 |
-
yield {
|
175 |
-
"is_relevant": score > 0.5,
|
176 |
-
"confidence_score": score,
|
177 |
-
"model_reasoning": output_reasoning
|
178 |
-
}
|
179 |
-
|
180 |
-
# Move model back to CPU
|
181 |
-
self.model = self.model.to("cpu")
|
182 |
-
torch.cuda.empty_cache()
|
|
|
3 |
import logging
|
4 |
import math
|
5 |
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer, TextIteratorStreamer
|
7 |
from transformers import StoppingCriteria, StoppingCriteriaList
|
8 |
from transformers import AwqConfig, AutoModelForCausalLM
|
9 |
from threading import Thread
|
|
|
80 |
eos_token_id=self.tokenizer.eos_token_id,
|
81 |
stopping_sequences=["</think> true", "</think> false"]
|
82 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|