Spaces:
Runtime error
Runtime error
File size: 11,715 Bytes
c4e6a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import torch
import numpy as np
from typing import Optional, List
from diffusers import DDIMScheduler, StableDiffusionPipeline
from tqdm import tqdm
from cv2 import dilate
from src.attention_utils import show_cross_attention
from src.attention_based_segmentation import Segmentor
from src.prompt_to_prompt_controllers import DummyController, AttentionStore
def get_stable_diffusion_model(args):
device = torch.device(f'cuda:{args.gpu_id}') if torch.cuda.is_available() else torch.device('cpu')
if args.real_image_path != "":
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
ldm_stable = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=args.auth_token, scheduler=scheduler).to(device)
else:
ldm_stable = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=args.auth_token).to(device)
return ldm_stable
def get_stable_diffusion_config(args):
return {
"low_resource": args.low_resource,
"num_diffusion_steps": args.num_diffusion_steps,
"guidance_scale": args.guidance_scale,
"max_num_words": args.max_num_words
}
def generate_original_image(args, ldm_stable, ldm_stable_config, prompts, latent, uncond_embeddings):
g_cpu = torch.Generator(device=ldm_stable.device).manual_seed(args.seed)
controller = AttentionStore(ldm_stable_config["low_resource"])
diffusion_model_wrapper = DiffusionModelWrapper(args, ldm_stable, ldm_stable_config, controller, generator=g_cpu)
image, x_t, orig_all_latents, _ = diffusion_model_wrapper.forward(prompts,
latent=latent,
uncond_embeddings=uncond_embeddings)
orig_mask = Segmentor(controller, prompts, args.num_segments, args.background_segment_threshold, background_nouns=args.background_nouns)\
.get_background_mask(args.prompt.split(' ').index("{word}") + 1)
average_attention = controller.get_average_attention()
return image, x_t, orig_all_latents, orig_mask, average_attention
class DiffusionModelWrapper:
def __init__(self, args, model, model_config, controller=None, prompt_mixing=None, generator=None):
self.args = args
self.model = model
self.model_config = model_config
self.controller = controller
if self.controller is None:
self.controller = DummyController()
self.prompt_mixing = prompt_mixing
self.device = model.device
self.generator = generator
self.height = 512
self.width = 512
self.diff_step = 0
self.register_attention_control()
def diffusion_step(self, latents, context, t, other_context=None):
if self.model_config["low_resource"]:
self.uncond_pred = True
noise_pred_uncond = self.model.unet(latents, t, encoder_hidden_states=(context[0], None))["sample"]
self.uncond_pred = False
noise_prediction_text = self.model.unet(latents, t, encoder_hidden_states=(context[1], other_context))["sample"]
else:
latents_input = torch.cat([latents] * 2)
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=(context, other_context))["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.model_config["guidance_scale"] * (noise_prediction_text - noise_pred_uncond)
latents = self.model.scheduler.step(noise_pred, t, latents)["prev_sample"]
latents = self.controller.step_callback(latents)
return latents
def latent2image(self, latents):
latents = 1 / 0.18215 * latents
image = self.model.vae.decode(latents)['sample']
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
return image
def init_latent(self, latent, batch_size):
if latent is None:
latent = torch.randn(
(1, self.model.unet.in_channels, self.height // 8, self.width // 8),
generator=self.generator, device=self.model.device
)
latents = latent.expand(batch_size, self.model.unet.in_channels, self.height // 8, self.width // 8).to(self.device)
return latent, latents
def register_attention_control(self):
def ca_forward(model_self, place_in_unet):
to_out = model_self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = model_self.to_out[0]
else:
to_out = model_self.to_out
def forward(x, context=None, mask=None):
batch_size, sequence_length, dim = x.shape
h = model_self.heads
q = model_self.to_q(x)
is_cross = context is not None
context = context if is_cross else (x, None)
k = model_self.to_k(context[0])
if is_cross and self.prompt_mixing is not None:
v_context = self.prompt_mixing.get_context_for_v(self.diff_step, context[0], context[1])
v = model_self.to_v(v_context)
else:
v = model_self.to_v(context[0])
q = model_self.reshape_heads_to_batch_dim(q)
k = model_self.reshape_heads_to_batch_dim(k)
v = model_self.reshape_heads_to_batch_dim(v)
sim = torch.einsum("b i d, b j d -> b i j", q, k) * model_self.scale
if mask is not None:
mask = mask.reshape(batch_size, -1)
max_neg_value = -torch.finfo(sim.dtype).max
mask = mask[:, None, :].repeat(h, 1, 1)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
if self.enbale_attn_controller_changes:
attn = self.controller(attn, is_cross, place_in_unet)
if is_cross and context[1] is not None and self.prompt_mixing is not None:
attn = self.prompt_mixing.get_cross_attn(self, self.diff_step, attn, place_in_unet, batch_size)
if not is_cross and (not self.model_config["low_resource"] or not self.uncond_pred) and self.prompt_mixing is not None:
attn = self.prompt_mixing.get_self_attn(self, self.diff_step, attn, place_in_unet, batch_size)
out = torch.einsum("b i j, b j d -> b i d", attn, v)
out = model_self.reshape_batch_dim_to_heads(out)
return to_out(out)
return forward
def register_recr(net_, count, place_in_unet):
if net_.__class__.__name__ == 'CrossAttention':
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
elif hasattr(net_, 'children'):
for net__ in net_.children():
count = register_recr(net__, count, place_in_unet)
return count
cross_att_count = 0
sub_nets = self.model.unet.named_children()
for net in sub_nets:
if "down" in net[0]:
cross_att_count += register_recr(net[1], 0, "down")
elif "up" in net[0]:
cross_att_count += register_recr(net[1], 0, "up")
elif "mid" in net[0]:
cross_att_count += register_recr(net[1], 0, "mid")
self.controller.num_att_layers = cross_att_count
def get_text_embedding(self, prompt: List[str], max_length=None, truncation=True):
text_input = self.model.tokenizer(
prompt,
padding="max_length",
max_length=self.model.tokenizer.model_max_length if max_length is None else max_length,
truncation=truncation,
return_tensors="pt",
)
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.device))[0]
max_length = text_input.input_ids.shape[-1]
return text_embeddings, max_length
@torch.no_grad()
def forward(self, prompt: List[str], latent: Optional[torch.FloatTensor] = None,
other_prompt: List[str] = None, post_background = False, orig_all_latents = None, orig_mask = None,
uncond_embeddings=None, start_time=51, return_type='image'):
self.enbale_attn_controller_changes = True
batch_size = len(prompt)
text_embeddings, max_length = self.get_text_embedding(prompt)
if uncond_embeddings is None:
uncond_embeddings_, _ = self.get_text_embedding([""] * batch_size, max_length=max_length, truncation=False)
else:
uncond_embeddings_ = None
other_context = None
if other_prompt is not None:
other_text_embeddings, _ = self.get_text_embedding(other_prompt)
other_context = other_text_embeddings
latent, latents = self.init_latent(latent, batch_size)
# set timesteps
self.model.scheduler.set_timesteps(self.model_config["num_diffusion_steps"])
all_latents = []
object_mask = None
self.diff_step = 0
for i, t in enumerate(tqdm(self.model.scheduler.timesteps[-start_time:])):
if uncond_embeddings_ is None:
context = [uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings]
else:
context = [uncond_embeddings_, text_embeddings]
if not self.model_config["low_resource"]:
context = torch.cat(context)
self.down_cross_index = 0
self.mid_cross_index = 0
self.up_cross_index = 0
latents = self.diffusion_step(latents, context, t, other_context)
if post_background and self.diff_step == self.args.background_blend_timestep:
object_mask = Segmentor(self.controller,
prompt,
self.args.num_segments,
self.args.background_segment_threshold,
background_nouns=self.args.background_nouns)\
.get_background_mask(self.args.prompt.split(' ').index("{word}") + 1)
self.enbale_attn_controller_changes = False
mask = object_mask.astype(np.bool8) + orig_mask.astype(np.bool8)
mask = torch.from_numpy(mask).float().cuda()
shape = (1, 1, mask.shape[0], mask.shape[1])
mask = torch.nn.Upsample(size=(64, 64), mode='nearest')(mask.view(shape))
mask_eroded = dilate(mask.cpu().numpy()[0, 0], np.ones((3, 3), np.uint8), iterations=1)
mask = torch.from_numpy(mask_eroded).float().cuda().view(1, 1, 64, 64)
latents = mask * latents + (1 - mask) * orig_all_latents[self.diff_step]
all_latents.append(latents)
self.diff_step += 1
if return_type == 'image':
image = self.latent2image(latents)
else:
image = latents
return image, latent, all_latents, object_mask
def show_last_cross_attention(self, res: int, from_where: List[str], prompts, select: int = 0):
show_cross_attention(self.controller, res, from_where, prompts, tokenizer=self.model.tokenizer, select=select) |