Spaces:
Runtime error
Runtime error
Commit
·
b5f570d
1
Parent(s):
e9baf2d
optimize setup
Browse files- gradio_app.py +5 -4
- main.py +14 -11
gradio_app.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
-
|
4 |
import gradio as gr
|
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
|
8 |
-
import nltk
|
9 |
nltk.download('punkt')
|
10 |
nltk.download('averaged_perceptron_tagger')
|
11 |
|
12 |
-
from main import LPMConfig, main
|
13 |
|
14 |
DESCRIPTION = '''# Localizing Object-level Shape Variations with Text-to-Image Diffusion Models
|
15 |
This is a demo for our ''Localizing Object-level Shape Variations with Text-to-Image Diffusion Models'' [paper](https://arxiv.org/abs/2303.11306).
|
@@ -17,6 +16,8 @@ We introduce a method that generates object-level shape variation for a given im
|
|
17 |
This demo allows using a real image as well as a generated image. For a real image, a matching prompt is required.
|
18 |
'''
|
19 |
|
|
|
|
|
20 |
def main_pipeline(
|
21 |
prompt: str,
|
22 |
object_of_interest: str,
|
@@ -47,7 +48,7 @@ def main_pipeline(
|
|
47 |
real_image_path="" if input_image is None else input_image
|
48 |
)
|
49 |
|
50 |
-
result_images, result_proxy_words = main(args)
|
51 |
result_images = [im.permute(1, 2, 0).cpu().numpy() for im in result_images]
|
52 |
result_images = [(im * 255).astype(np.uint8) for im in result_images]
|
53 |
result_images = [Image.fromarray(im) for im in result_images]
|
|
|
1 |
from __future__ import annotations
|
2 |
|
|
|
3 |
import gradio as gr
|
4 |
+
import nltk
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
|
|
|
8 |
nltk.download('punkt')
|
9 |
nltk.download('averaged_perceptron_tagger')
|
10 |
|
11 |
+
from main import LPMConfig, main, setup
|
12 |
|
13 |
DESCRIPTION = '''# Localizing Object-level Shape Variations with Text-to-Image Diffusion Models
|
14 |
This is a demo for our ''Localizing Object-level Shape Variations with Text-to-Image Diffusion Models'' [paper](https://arxiv.org/abs/2303.11306).
|
|
|
16 |
This demo allows using a real image as well as a generated image. For a real image, a matching prompt is required.
|
17 |
'''
|
18 |
|
19 |
+
stable, stable_config = setup(LPMConfig())
|
20 |
+
|
21 |
def main_pipeline(
|
22 |
prompt: str,
|
23 |
object_of_interest: str,
|
|
|
48 |
real_image_path="" if input_image is None else input_image
|
49 |
)
|
50 |
|
51 |
+
result_images, result_proxy_words = main(stable, stable_config, args)
|
52 |
result_images = [im.permute(1, 2, 0).cpu().numpy() for im in result_images]
|
53 |
result_images = [(im * 255).astype(np.uint8) for im in result_images]
|
54 |
result_images = [Image.fromarray(im) for im in result_images]
|
main.py
CHANGED
@@ -1,21 +1,20 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
from dataclasses import dataclass, field
|
4 |
-
from typing import List
|
5 |
-
|
6 |
import pyrallis
|
7 |
import torch
|
|
|
8 |
from torch.utils.data import DataLoader
|
9 |
-
from torchvision.utils import save_image
|
10 |
from torchvision.transforms import ToTensor
|
|
|
11 |
from tqdm import tqdm
|
|
|
12 |
|
13 |
-
from src.prompt_to_prompt_controllers import AttentionStore, AttentionReplace
|
14 |
-
from src.null_text_inversion import invert_image
|
15 |
-
from src.prompt_utils import get_proxy_prompts
|
16 |
-
from src.prompt_mixing import PromptMixing
|
17 |
from src.diffusion_model_wrapper import DiffusionModelWrapper, get_stable_diffusion_model, get_stable_diffusion_config, \
|
18 |
generate_original_image
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
def save_args_dict(args, similar_words):
|
@@ -29,10 +28,13 @@ def save_args_dict(args, similar_words):
|
|
29 |
|
30 |
return exp_path
|
31 |
|
32 |
-
|
33 |
-
def main(args):
|
34 |
ldm_stable = get_stable_diffusion_model(args)
|
35 |
ldm_stable_config = get_stable_diffusion_config(args)
|
|
|
|
|
|
|
|
|
36 |
|
37 |
similar_words, prompts, another_prompts = get_proxy_prompts(args, ldm_stable)
|
38 |
exp_path = save_args_dict(args, similar_words)
|
@@ -147,4 +149,5 @@ if __name__ == '__main__':
|
|
147 |
args = pyrallis.parse(config_class=LPMConfig)
|
148 |
|
149 |
print(args)
|
150 |
-
|
|
|
|
1 |
import json
|
2 |
import os
|
|
|
|
|
|
|
3 |
import pyrallis
|
4 |
import torch
|
5 |
+
from dataclasses import dataclass, field
|
6 |
from torch.utils.data import DataLoader
|
|
|
7 |
from torchvision.transforms import ToTensor
|
8 |
+
from torchvision.utils import save_image
|
9 |
from tqdm import tqdm
|
10 |
+
from typing import List
|
11 |
|
|
|
|
|
|
|
|
|
12 |
from src.diffusion_model_wrapper import DiffusionModelWrapper, get_stable_diffusion_model, get_stable_diffusion_config, \
|
13 |
generate_original_image
|
14 |
+
from src.null_text_inversion import invert_image
|
15 |
+
from src.prompt_mixing import PromptMixing
|
16 |
+
from src.prompt_to_prompt_controllers import AttentionStore, AttentionReplace
|
17 |
+
from src.prompt_utils import get_proxy_prompts
|
18 |
|
19 |
|
20 |
def save_args_dict(args, similar_words):
|
|
|
28 |
|
29 |
return exp_path
|
30 |
|
31 |
+
def setup(args):
|
|
|
32 |
ldm_stable = get_stable_diffusion_model(args)
|
33 |
ldm_stable_config = get_stable_diffusion_config(args)
|
34 |
+
return ldm_stable, ldm_stable_config
|
35 |
+
|
36 |
+
|
37 |
+
def main(ldm_stable, ldm_stable_config, args):
|
38 |
|
39 |
similar_words, prompts, another_prompts = get_proxy_prompts(args, ldm_stable)
|
40 |
exp_path = save_args_dict(args, similar_words)
|
|
|
149 |
args = pyrallis.parse(config_class=LPMConfig)
|
150 |
|
151 |
print(args)
|
152 |
+
stable, stable_config = setup(args)
|
153 |
+
main(stable, stable_config, args)
|