ortzi3 commited on
Commit
aa551f3
·
verified ·
1 Parent(s): 4a7e999

Update tasks/audio.py

Browse files
Files changed (1) hide show
  1. tasks/audio.py +11 -10
tasks/audio.py CHANGED
@@ -48,6 +48,17 @@ async def evaluate_audio(request: AudioEvaluationRequest):
48
  train_test = dataset["train"]
49
  test_dataset = dataset["test"]
50
 
 
 
 
 
 
 
 
 
 
 
 
51
  def preprocess_data(row, sr):
52
  new_row = librosa.resample(row['audio']['array'], orig_sr=row['audio']['sampling_rate'], target_sr=sr)
53
  new_row = np.pad(new_row, (0, 3 * sr - len(new_row)), 'constant')
@@ -59,16 +70,6 @@ async def evaluate_audio(request: AudioEvaluationRequest):
59
  model_filename = "lightgbm_10_mfcc.pkl"
60
  clf = joblib.load(model_filename)
61
 
62
- # Start tracking emissions
63
- tracker.start()
64
- tracker.start_task("inference")
65
-
66
- #--------------------------------------------------------------------------------------------
67
- # YOUR MODEL INFERENCE CODE HERE
68
- # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
69
- #--------------------------------------------------------------------------------------------
70
-
71
- # Make random predictions (placeholder for actual model inference)
72
  true_labels = test_dataset["label"]
73
  predictions = clf.predict(test_list_mfcc)
74
 
 
48
  train_test = dataset["train"]
49
  test_dataset = dataset["test"]
50
 
51
+
52
+ # Start tracking emissions
53
+ tracker.start()
54
+ tracker.start_task("inference")
55
+
56
+ #--------------------------------------------------------------------------------------------
57
+ # YOUR MODEL INFERENCE CODE HERE
58
+ # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
59
+ #--------------------------------------------------------------------------------------------
60
+
61
+
62
  def preprocess_data(row, sr):
63
  new_row = librosa.resample(row['audio']['array'], orig_sr=row['audio']['sampling_rate'], target_sr=sr)
64
  new_row = np.pad(new_row, (0, 3 * sr - len(new_row)), 'constant')
 
70
  model_filename = "lightgbm_10_mfcc.pkl"
71
  clf = joblib.load(model_filename)
72
 
 
 
 
 
 
 
 
 
 
 
73
  true_labels = test_dataset["label"]
74
  predictions = clf.predict(test_list_mfcc)
75