ortzi3 commited on
Commit
b6b478a
·
verified ·
1 Parent(s): 0ae53cb

Update tasks/audio.py

Browse files
Files changed (1) hide show
  1. tasks/audio.py +16 -1
tasks/audio.py CHANGED
@@ -4,6 +4,10 @@ from datasets import load_dataset
4
  from sklearn.metrics import accuracy_score
5
  import random
6
  import os
 
 
 
 
7
 
8
  from .utils.evaluation import AudioEvaluationRequest
9
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
@@ -43,6 +47,17 @@ async def evaluate_audio(request: AudioEvaluationRequest):
43
  # Split dataset
44
  train_test = dataset["train"]
45
  test_dataset = dataset["test"]
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  # Start tracking emissions
48
  tracker.start()
@@ -55,7 +70,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
55
 
56
  # Make random predictions (placeholder for actual model inference)
57
  true_labels = test_dataset["label"]
58
- predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
59
 
60
  #--------------------------------------------------------------------------------------------
61
  # YOUR MODEL INFERENCE STOPS HERE
 
4
  from sklearn.metrics import accuracy_score
5
  import random
6
  import os
7
+ import librosa
8
+ import joblib
9
+ import numpy as np
10
+ import lightgbm
11
 
12
  from .utils.evaluation import AudioEvaluationRequest
13
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
 
47
  # Split dataset
48
  train_test = dataset["train"]
49
  test_dataset = dataset["test"]
50
+
51
+ def preprocess_data(row, sr):
52
+ new_row = librosa.resample(row['audio']['array'], orig_sr=row['audio']['sampling_rate'], target_sr=sr)
53
+ new_row = np.pad(new_row, (0, 3 * sr - len(new_row)), 'constant')
54
+ new_row = librosa.feature.mfcc(y=new_row, sr=sr, n_mfcc=10)
55
+ return new_row.flatten()
56
+
57
+ test_list_mfcc = np.vstack([preprocess_data(row, 12000) for row in test_dataset])
58
+
59
+ model_filename = "lightgbm_10_mfcc.pkl"
60
+ clf = joblib.load(model_filename)
61
 
62
  # Start tracking emissions
63
  tracker.start()
 
70
 
71
  # Make random predictions (placeholder for actual model inference)
72
  true_labels = test_dataset["label"]
73
+ predictions = clf.predict(test_list_mfcc)
74
 
75
  #--------------------------------------------------------------------------------------------
76
  # YOUR MODEL INFERENCE STOPS HERE