Spaces:
Sleeping
Sleeping
Abhimanyu993
commited on
Commit
·
4fc2485
0
Parent(s):
deployment
Browse files- .gitattributes +1 -0
- Dockerfile +20 -0
- README.md +8 -0
- app.py +90 -0
- model.safetensors +3 -0
- requirements.txt +7 -0
.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the requirements file into the container
|
8 |
+
COPY requirements.txt .
|
9 |
+
|
10 |
+
# Install dependencies
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Copy the entire project into the container
|
14 |
+
COPY . .
|
15 |
+
|
16 |
+
# Expose the FastAPI port (7860 for Hugging Face Spaces)
|
17 |
+
EXPOSE 7860
|
18 |
+
|
19 |
+
# Command to run the application
|
20 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title: AI Code Detector
|
2 |
+
emoji: 🧠
|
3 |
+
colorFrom: blue
|
4 |
+
colorTo: purple
|
5 |
+
sdk: docker
|
6 |
+
sdk_version: 3.50.2
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uvicorn
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import torch
|
6 |
+
from safetensors.torch import load_file
|
7 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
8 |
+
|
9 |
+
# Ensure CPU is always used
|
10 |
+
device = torch.device('cpu')
|
11 |
+
|
12 |
+
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
|
13 |
+
os.environ["TRANSFORMERS_CACHE"] = os.environ["HF_HOME"]
|
14 |
+
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
|
15 |
+
|
16 |
+
app = FastAPI()
|
17 |
+
|
18 |
+
class CodeBERTClassifier(torch.nn.Module):
|
19 |
+
def __init__(self):
|
20 |
+
super(CodeBERTClassifier, self).__init__()
|
21 |
+
self.model = RobertaForSequenceClassification.from_pretrained(
|
22 |
+
"microsoft/codebert-base",
|
23 |
+
num_labels=2,
|
24 |
+
cache_dir=os.environ["HF_HOME"]
|
25 |
+
).to(device) # Ensure model is on CPU
|
26 |
+
|
27 |
+
def forward(self, input_ids, attention_mask=None):
|
28 |
+
outputs = self.model(input_ids, attention_mask=attention_mask)
|
29 |
+
return outputs.logits
|
30 |
+
|
31 |
+
|
32 |
+
def load_model():
|
33 |
+
model = CodeBERTClassifier()
|
34 |
+
model.load_state_dict(load_file('model.safetensors'), strict=False)
|
35 |
+
model.eval()
|
36 |
+
tokenizer = RobertaTokenizer.from_pretrained(
|
37 |
+
"microsoft/codebert-base",
|
38 |
+
cache_dir=os.environ["HF_HOME"]
|
39 |
+
)
|
40 |
+
return model, tokenizer
|
41 |
+
|
42 |
+
model, tokenizer = load_model()
|
43 |
+
|
44 |
+
|
45 |
+
class CodeRequest(BaseModel):
|
46 |
+
code_samples: list[str]
|
47 |
+
|
48 |
+
|
49 |
+
def preprocess_input_code(code_samples):
|
50 |
+
inputs = tokenizer(code_samples, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
|
51 |
+
return inputs["input_ids"].to(device), inputs["attention_mask"].to(device) # Move tensors to CPU
|
52 |
+
|
53 |
+
|
54 |
+
def predict(code_samples):
|
55 |
+
tokens, masks = preprocess_input_code(code_samples)
|
56 |
+
with torch.no_grad():
|
57 |
+
logits = model(tokens, attention_mask=masks)
|
58 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1).numpy() # Keep on CPU for processing
|
59 |
+
return probabilities
|
60 |
+
|
61 |
+
|
62 |
+
@app.get("/")
|
63 |
+
def home():
|
64 |
+
return {"message": "API is running!"}
|
65 |
+
|
66 |
+
|
67 |
+
@app.post("/predict/")
|
68 |
+
async def predict_code(request: CodeRequest):
|
69 |
+
probabilities = predict(request.code_samples)
|
70 |
+
prediction_labels = []
|
71 |
+
for prob in probabilities:
|
72 |
+
ai_generated_prob = prob[1] * 100
|
73 |
+
human_generated_prob = prob[0] * 100
|
74 |
+
if ai_generated_prob > human_generated_prob:
|
75 |
+
prediction_labels.append(f"{ai_generated_prob:.2f}% Of code similar to AI-generated code.")
|
76 |
+
else:
|
77 |
+
prediction_labels.append(f"{human_generated_prob:.2f}% Of code similar to Human-generated code.")
|
78 |
+
return {"predictions": prediction_labels}
|
79 |
+
|
80 |
+
|
81 |
+
@app.post("/detect/")
|
82 |
+
async def detect_code(request: CodeRequest):
|
83 |
+
probabilities = predict(request.code_samples)
|
84 |
+
results = [{"AI": f"{prob[1]*100:.2f}%", "Human": f"{prob[0]*100:.2f}%"} for prob in probabilities]
|
85 |
+
return {"predictions": results}
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
port = int(os.environ.get("PORT", 7860))
|
90 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77abc624b3b7f04a0ef3484d3ae5372178b1b669b338fc497da11975a4e3a4c0
|
3 |
+
size 498614000
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
pydantic
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
gdown
|
6 |
+
uvicorn
|
7 |
+
huggingface-hub
|