File size: 2,553 Bytes
1d53eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
os.system("git clone https://github.com/thohemp/6DRepNet")
import sys
sys.path.append("frame-interpolation")

from model import SixDRepNet
import math
import re
from matplotlib import pyplot as plt
import sys
import os

import numpy as np
import cv2
import matplotlib.pyplot as plt
from numpy.lib.function_base import _quantile_unchecked

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
import torchvision
import torch.nn.functional as F
import utils
import matplotlib
from PIL import Image
import time
from face_detection import RetinaFace
from huggingface_hub import hf_hub_download

snapshot_path = hf_hub_download(repo_id="osanseviero/6DRepNet_300W_LP_AFLW2000", filename="model.pth")

model = SixDRepNet(backbone_name='RepVGG-B1g2',
                        backbone_file='',
                        deploy=True,
                        pretrained=False)
                        
detector = RetinaFace()
saved_state_dict = torch.load(os.path.join(
        snapshot_path), map_location='cpu')
        
if 'model_state_dict' in saved_state_dict:
    model.load_state_dict(saved_state_dict['model_state_dict'])
else:
    model.load_state_dict(saved_state_dict)    
model.eval()


def predict(img):
  faces = detector(frame)
  for box, landmarks, score in faces:
      # Print the location of each face in this image
      if score < .95:
          continue
      x_min = int(box[0])
      y_min = int(box[1])
      x_max = int(box[2])
      y_max = int(box[3])         
      bbox_width = abs(x_max - x_min)
      bbox_height = abs(y_max - y_min)
  
      x_min = max(0,x_min-int(0.2*bbox_height))
      y_min = max(0,y_min-int(0.2*bbox_width))
      x_max = x_max+int(0.2*bbox_height)
      y_max = y_max+int(0.2*bbox_width)
  
      img = frame[y_min:y_max,x_min:x_max]
      img = cv2.resize(img, (244, 244))/255.0
      img = img.transpose(2, 0, 1)
      img = torch.from_numpy(img).type(torch.FloatTensor)
      img = torch.Tensor(img)
      img=img.unsqueeze(0)         

      R_pred = model(img)
      euler = utils.compute_euler_angles_from_rotation_matrices(
          R_pred)*180/np.pi
      p_pred_deg = euler[:, 0].cpu()
      y_pred_deg = euler[:, 1].cpu()
      r_pred_deg = euler[:, 2].cpu()
      utils.plot_pose_cube(frame, y_pred_deg, p_pred_deg, r_pred_deg, x_min + int(.5*(x_max-x_min)), y_min + int(.5*(y_max-y_min)), size = bbox_width)
      
    return img
  
  
iface = gr.Interface(
    fn=predict, 
    inputs='img',
    outputs='img',
)

iface.launch()