6DRepNet / app.py
osanseviero's picture
Create app.py
1d53eef
raw
history blame
2.55 kB
import os
os.system("git clone https://github.com/thohemp/6DRepNet")
import sys
sys.path.append("frame-interpolation")
from model import SixDRepNet
import math
import re
from matplotlib import pyplot as plt
import sys
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
from numpy.lib.function_base import _quantile_unchecked
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
import torchvision
import torch.nn.functional as F
import utils
import matplotlib
from PIL import Image
import time
from face_detection import RetinaFace
from huggingface_hub import hf_hub_download
snapshot_path = hf_hub_download(repo_id="osanseviero/6DRepNet_300W_LP_AFLW2000", filename="model.pth")
model = SixDRepNet(backbone_name='RepVGG-B1g2',
backbone_file='',
deploy=True,
pretrained=False)
detector = RetinaFace()
saved_state_dict = torch.load(os.path.join(
snapshot_path), map_location='cpu')
if 'model_state_dict' in saved_state_dict:
model.load_state_dict(saved_state_dict['model_state_dict'])
else:
model.load_state_dict(saved_state_dict)
model.eval()
def predict(img):
faces = detector(frame)
for box, landmarks, score in faces:
# Print the location of each face in this image
if score < .95:
continue
x_min = int(box[0])
y_min = int(box[1])
x_max = int(box[2])
y_max = int(box[3])
bbox_width = abs(x_max - x_min)
bbox_height = abs(y_max - y_min)
x_min = max(0,x_min-int(0.2*bbox_height))
y_min = max(0,y_min-int(0.2*bbox_width))
x_max = x_max+int(0.2*bbox_height)
y_max = y_max+int(0.2*bbox_width)
img = frame[y_min:y_max,x_min:x_max]
img = cv2.resize(img, (244, 244))/255.0
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).type(torch.FloatTensor)
img = torch.Tensor(img)
img=img.unsqueeze(0)
R_pred = model(img)
euler = utils.compute_euler_angles_from_rotation_matrices(
R_pred)*180/np.pi
p_pred_deg = euler[:, 0].cpu()
y_pred_deg = euler[:, 1].cpu()
r_pred_deg = euler[:, 2].cpu()
utils.plot_pose_cube(frame, y_pred_deg, p_pred_deg, r_pred_deg, x_min + int(.5*(x_max-x_min)), y_min + int(.5*(y_max-y_min)), size = bbox_width)
return img
iface = gr.Interface(
fn=predict,
inputs='img',
outputs='img',
)
iface.launch()