Spaces:
Runtime error
Runtime error
import os | |
os.system("git clone https://github.com/thohemp/6DRepNet") | |
import sys | |
sys.path.append("frame-interpolation") | |
from model import SixDRepNet | |
import math | |
import re | |
from matplotlib import pyplot as plt | |
import sys | |
import os | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
from numpy.lib.function_base import _quantile_unchecked | |
import torch | |
import torch.nn as nn | |
from torch.utils.data import DataLoader | |
from torchvision import transforms | |
import torchvision | |
import torch.nn.functional as F | |
import utils | |
import matplotlib | |
from PIL import Image | |
import time | |
from face_detection import RetinaFace | |
from huggingface_hub import hf_hub_download | |
snapshot_path = hf_hub_download(repo_id="osanseviero/6DRepNet_300W_LP_AFLW2000", filename="model.pth") | |
model = SixDRepNet(backbone_name='RepVGG-B1g2', | |
backbone_file='', | |
deploy=True, | |
pretrained=False) | |
detector = RetinaFace() | |
saved_state_dict = torch.load(os.path.join( | |
snapshot_path), map_location='cpu') | |
if 'model_state_dict' in saved_state_dict: | |
model.load_state_dict(saved_state_dict['model_state_dict']) | |
else: | |
model.load_state_dict(saved_state_dict) | |
model.eval() | |
def predict(img): | |
faces = detector(frame) | |
for box, landmarks, score in faces: | |
# Print the location of each face in this image | |
if score < .95: | |
continue | |
x_min = int(box[0]) | |
y_min = int(box[1]) | |
x_max = int(box[2]) | |
y_max = int(box[3]) | |
bbox_width = abs(x_max - x_min) | |
bbox_height = abs(y_max - y_min) | |
x_min = max(0,x_min-int(0.2*bbox_height)) | |
y_min = max(0,y_min-int(0.2*bbox_width)) | |
x_max = x_max+int(0.2*bbox_height) | |
y_max = y_max+int(0.2*bbox_width) | |
img = frame[y_min:y_max,x_min:x_max] | |
img = cv2.resize(img, (244, 244))/255.0 | |
img = img.transpose(2, 0, 1) | |
img = torch.from_numpy(img).type(torch.FloatTensor) | |
img = torch.Tensor(img) | |
img=img.unsqueeze(0) | |
R_pred = model(img) | |
euler = utils.compute_euler_angles_from_rotation_matrices( | |
R_pred)*180/np.pi | |
p_pred_deg = euler[:, 0].cpu() | |
y_pred_deg = euler[:, 1].cpu() | |
r_pred_deg = euler[:, 2].cpu() | |
utils.plot_pose_cube(frame, y_pred_deg, p_pred_deg, r_pred_deg, x_min + int(.5*(x_max-x_min)), y_min + int(.5*(y_max-y_min)), size = bbox_width) | |
return img | |
iface = gr.Interface( | |
fn=predict, | |
inputs='img', | |
outputs='img', | |
) | |
iface.launch() |