Spaces:
Runtime error
Runtime error
Commit
·
91fd28c
1
Parent(s):
fd743d2
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,73 @@
|
|
1 |
import os
|
2 |
os.system("pip install git+https://github.com/elliottzheng/face-detection.git@master")
|
3 |
os.system("git clone https://github.com/thohemp/6DRepNet")
|
4 |
-
import sys
|
5 |
-
sys.path.append("6DRepNet")
|
6 |
|
7 |
-
from model import SixDRepNet
|
8 |
-
import math
|
9 |
-
import re
|
10 |
-
from matplotlib import pyplot as plt
|
11 |
import sys
|
12 |
-
|
13 |
|
14 |
import numpy as np
|
15 |
-
import cv2
|
16 |
-
import matplotlib.pyplot as plt
|
17 |
-
from numpy.lib.function_base import _quantile_unchecked
|
18 |
-
|
19 |
import torch
|
20 |
-
import torch.nn as nn
|
21 |
-
from torch.utils.data import DataLoader
|
22 |
-
from torchvision import transforms
|
23 |
-
import torchvision
|
24 |
-
import torch.nn.functional as F
|
25 |
-
import utils
|
26 |
-
import matplotlib
|
27 |
-
from PIL import Image
|
28 |
-
import time
|
29 |
-
from face_detection import RetinaFace
|
30 |
from huggingface_hub import hf_hub_download
|
31 |
|
|
|
|
|
|
|
|
|
32 |
snapshot_path = hf_hub_download(repo_id="osanseviero/6DRepNet_300W_LP_AFLW2000", filename="model.pth")
|
33 |
|
34 |
model = SixDRepNet(backbone_name='RepVGG-B1g2',
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
detector = RetinaFace()
|
40 |
saved_state_dict = torch.load(os.path.join(
|
41 |
snapshot_path), map_location='cpu')
|
42 |
-
|
43 |
if 'model_state_dict' in saved_state_dict:
|
44 |
model.load_state_dict(saved_state_dict['model_state_dict'])
|
45 |
else:
|
46 |
-
model.load_state_dict(saved_state_dict)
|
|
|
47 |
model.eval()
|
48 |
|
49 |
-
|
50 |
def predict(img):
|
51 |
faces = detector(frame)
|
52 |
for box, landmarks, score in faces:
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
img = frame[y_min:y_max,x_min:x_max]
|
69 |
-
img = cv2.resize(img, (244, 244))/255.0
|
70 |
-
img = img.transpose(2, 0, 1)
|
71 |
-
img = torch.from_numpy(img).type(torch.FloatTensor)
|
72 |
-
img = torch.Tensor(img)
|
73 |
-
img=img.unsqueeze(0)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
iface = gr.Interface(
|
87 |
fn=predict,
|
88 |
-
inputs=
|
89 |
-
outputs='
|
90 |
)
|
91 |
|
92 |
iface.launch()
|
|
|
1 |
import os
|
2 |
os.system("pip install git+https://github.com/elliottzheng/face-detection.git@master")
|
3 |
os.system("git clone https://github.com/thohemp/6DRepNet")
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
5 |
import sys
|
6 |
+
sys.path.append("6DRepNet")
|
7 |
|
8 |
import numpy as np
|
|
|
|
|
|
|
|
|
9 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
+
from face_detection import RetinaFace
|
13 |
+
from model import SixDRepNet
|
14 |
+
import utils
|
15 |
+
|
16 |
snapshot_path = hf_hub_download(repo_id="osanseviero/6DRepNet_300W_LP_AFLW2000", filename="model.pth")
|
17 |
|
18 |
model = SixDRepNet(backbone_name='RepVGG-B1g2',
|
19 |
+
backbone_file='',
|
20 |
+
deploy=True,
|
21 |
+
pretrained=False)
|
22 |
+
|
23 |
+
detector = RetinaFace(0)
|
24 |
saved_state_dict = torch.load(os.path.join(
|
25 |
snapshot_path), map_location='cpu')
|
26 |
+
|
27 |
if 'model_state_dict' in saved_state_dict:
|
28 |
model.load_state_dict(saved_state_dict['model_state_dict'])
|
29 |
else:
|
30 |
+
model.load_state_dict(saved_state_dict)
|
31 |
+
model.cuda(0)
|
32 |
model.eval()
|
33 |
|
|
|
34 |
def predict(img):
|
35 |
faces = detector(frame)
|
36 |
for box, landmarks, score in faces:
|
37 |
+
# Print the location of each face in this image
|
38 |
+
if score < .95:
|
39 |
+
continue
|
40 |
+
x_min = int(box[0])
|
41 |
+
y_min = int(box[1])
|
42 |
+
x_max = int(box[2])
|
43 |
+
y_max = int(box[3])
|
44 |
+
bbox_width = abs(x_max - x_min)
|
45 |
+
bbox_height = abs(y_max - y_min)
|
46 |
+
|
47 |
+
x_min = max(0,x_min-int(0.2*bbox_height))
|
48 |
+
y_min = max(0,y_min-int(0.2*bbox_width))
|
49 |
+
x_max = x_max+int(0.2*bbox_height)
|
50 |
+
y_max = y_max+int(0.2*bbox_width)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
img = frame[y_min:y_max,x_min:x_max]
|
53 |
+
img = cv2.resize(img, (244, 244))/255.0
|
54 |
+
img = img.transpose(2, 0, 1)
|
55 |
+
img = torch.from_numpy(img).type(torch.FloatTensor)
|
56 |
+
img = torch.Tensor(img).cuda(0)
|
57 |
+
img=img.unsqueeze(0)
|
58 |
+
R_pred = model(img)
|
59 |
+
euler = utils.compute_euler_angles_from_rotation_matrices(
|
60 |
+
R_pred)*180/np.pi
|
61 |
+
p_pred_deg = euler[:, 0].cpu()
|
62 |
+
y_pred_deg = euler[:, 1].cpu()
|
63 |
+
r_pred_deg = euler[:, 2].cpu()
|
64 |
+
return utils.plot_pose_cube(frame, y_pred_deg, p_pred_deg, r_pred_deg, x_min + int(.5*(x_max-x_min)), y_min + int(.5*(y_max-y_min)), size = bbox_width)
|
65 |
|
66 |
|
67 |
iface = gr.Interface(
|
68 |
fn=predict,
|
69 |
+
inputs=gr.inputs.Image(label="Input Image", source="webcam"),
|
70 |
+
outputs='image',
|
71 |
)
|
72 |
|
73 |
iface.launch()
|