Spaces:
Runtime error
Runtime error
Commit
·
b6236ba
1
Parent(s):
4d36fab
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import os
|
2 |
os.system('pip install git+https://github.com/huggingface/transformers.git --upgrade')
|
|
|
|
|
3 |
|
|
|
4 |
import gradio as gr
|
5 |
from transformers import ViTFeatureExtractor, ViTModel
|
6 |
import torch
|
@@ -8,7 +11,16 @@ import torch.nn as nn
|
|
8 |
import torchvision
|
9 |
import matplotlib.pyplot as plt
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
threshold = 0.6
|
13 |
w_featmap = pixel_values.shape[-2] // model.config.patch_size
|
14 |
h_featmap = pixel_values.shape[-1] // model.config.patch_size
|
@@ -25,57 +37,120 @@ def get_attention_maps(pixel_values, attentions, nh):
|
|
25 |
|
26 |
# interpolate
|
27 |
th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=model.config.patch_size, mode="nearest")[0].cpu().numpy()
|
|
|
28 |
attentions = attentions.reshape(nh, w_featmap, h_featmap)
|
29 |
attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=model.config.patch_size, mode="nearest")[0].cpu()
|
30 |
attentions = attentions.detach().numpy()
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
# save the attention map
|
40 |
-
plt.imsave(fname=fname, arr=attentions[j], format='png')
|
41 |
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
# normalize channels
|
52 |
-
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
nh = attentions.shape[1] # number of heads
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained("facebook/dino-vits8", do_resize=False)
|
68 |
-
model = ViTModel.from_pretrained("facebook/dino-vits8", add_pooling_layer=False)
|
69 |
|
70 |
title = "Interactive demo: DINO"
|
71 |
description = "Demo for Facebook AI's DINO, a new method for self-supervised training of Vision Transformers. Using this method, they are capable of segmenting objects within an image without having ever been trained to do so. This can be observed by displaying the self-attention of the heads from the last layer for the [CLS] token query. This demo uses a ViT-S/8 trained with DINO. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
72 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.14294'>Emerging Properties in Self-Supervised Vision Transformers</a> | <a href='https://github.com/facebookresearch/dino'>Github Repo</a></p>"
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
outputs=[gr.outputs.Video(label=f'result_video')],
|
77 |
title=title,
|
78 |
description=description,
|
79 |
-
article=article
|
80 |
-
examples=examples)
|
81 |
-
iface.launch()
|
|
|
1 |
import os
|
2 |
os.system('pip install git+https://github.com/huggingface/transformers.git --upgrade')
|
3 |
+
os.system('pip install gradio --upgrade')
|
4 |
+
os.system('pip freeze')
|
5 |
|
6 |
+
import os
|
7 |
import gradio as gr
|
8 |
from transformers import ViTFeatureExtractor, ViTModel
|
9 |
import torch
|
|
|
11 |
import torchvision
|
12 |
import matplotlib.pyplot as plt
|
13 |
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
from tqdm import tqdm
|
17 |
+
import glob
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("facebook/dino-vits8", do_resize=True, padding=True)
|
21 |
+
model = ViTModel.from_pretrained("facebook/dino-vits8", add_pooling_layer=False)
|
22 |
+
|
23 |
+
def get_attention_maps(pixel_values, attentions, nh, out, img_path):
|
24 |
threshold = 0.6
|
25 |
w_featmap = pixel_values.shape[-2] // model.config.patch_size
|
26 |
h_featmap = pixel_values.shape[-1] // model.config.patch_size
|
|
|
37 |
|
38 |
# interpolate
|
39 |
th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=model.config.patch_size, mode="nearest")[0].cpu().numpy()
|
40 |
+
|
41 |
attentions = attentions.reshape(nh, w_featmap, h_featmap)
|
42 |
attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=model.config.patch_size, mode="nearest")[0].cpu()
|
43 |
attentions = attentions.detach().numpy()
|
44 |
|
45 |
+
# sum all attentions
|
46 |
+
fname = os.path.join(out, "attn-" + os.path.basename(img_path))
|
47 |
+
plt.imsave(
|
48 |
+
fname=fname,
|
49 |
+
arr=sum(
|
50 |
+
attentions[i] * 1 / attentions.shape[0]
|
51 |
+
for i in range(attentions.shape[0])
|
52 |
+
),
|
53 |
+
cmap="inferno",
|
54 |
+
format="png",
|
55 |
+
)
|
56 |
|
|
|
|
|
57 |
|
58 |
+
def inference(inp: str, out: str):
|
59 |
+
print(f"Generating attention images to {out}")
|
60 |
|
61 |
+
# I had to process one at a time since colab was crashing...
|
62 |
+
for img_path in tqdm(sorted(glob.glob(os.path.join(inp, "*.jpg")))):
|
63 |
+
with open(img_path, "rb") as f:
|
64 |
+
img = Image.open(f)
|
65 |
+
img = img.convert("RGB")
|
66 |
+
|
67 |
+
# normalize channels
|
68 |
+
pixel_values = feature_extractor(images=img, return_tensors="pt").pixel_values
|
69 |
|
70 |
+
# forward pass
|
71 |
+
outputs = model(pixel_values, output_attentions=True, interpolate_pos_encoding=True)
|
72 |
|
73 |
+
# get attentions of last layer
|
74 |
+
attentions = outputs.attentions[-1]
|
75 |
+
nh = attentions.shape[1] # number of heads
|
|
|
|
|
76 |
|
77 |
+
# we keep only the output patch attention
|
78 |
+
attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
|
79 |
|
80 |
+
# sum and save attention maps
|
81 |
+
get_attention_maps(pixel_values, attentions, nh, out, img_path)
|
|
|
82 |
|
83 |
+
def extract_frames_from_video(inp: str, out: str):
|
84 |
+
vidcap = cv2.VideoCapture(inp)
|
85 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
86 |
+
|
87 |
+
print(f"Video: {inp} ({fps} fps)")
|
88 |
+
print(f"Extracting frames to {out}")
|
89 |
+
|
90 |
+
success, image = vidcap.read()
|
91 |
+
count = 0
|
92 |
+
while success:
|
93 |
+
cv2.imwrite(
|
94 |
+
os.path.join(out, f"frame-{count:04}.jpg"),
|
95 |
+
image,
|
96 |
+
)
|
97 |
+
success, image = vidcap.read()
|
98 |
+
count += 1
|
99 |
+
return fps
|
100 |
+
|
101 |
+
def generate_video_from_images(inp: str, out_name: str, fps: int):
|
102 |
+
img_array = []
|
103 |
+
attention_images_list = sorted(glob.glob(os.path.join(inp, "attn-*.jpg")))
|
104 |
+
|
105 |
+
# Get size of the first image
|
106 |
+
with open(attention_images_list[0], "rb") as f:
|
107 |
+
img = Image.open(f)
|
108 |
+
img = img.convert("RGB")
|
109 |
+
size = (400, 400)
|
110 |
+
img_array.append(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
|
111 |
+
|
112 |
+
print(f"Generating video {size} to {out_name}")
|
113 |
+
|
114 |
+
for filename in tqdm(attention_images_list[1:]):
|
115 |
+
with open(filename, "rb") as f:
|
116 |
+
img = Image.open(f)
|
117 |
+
img = img.convert("RGB")
|
118 |
+
img_array.append(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
|
119 |
+
|
120 |
+
out = cv2.VideoWriter(
|
121 |
+
out_name,
|
122 |
+
cv2.VideoWriter_fourcc(*"MP4V"),
|
123 |
+
fps,
|
124 |
+
size,
|
125 |
+
)
|
126 |
+
|
127 |
+
for i in range(len(img_array)):
|
128 |
+
out.write(img_array[i])
|
129 |
+
out.release()
|
130 |
+
print("Done")
|
131 |
+
return
|
132 |
+
|
133 |
+
def func(video):
|
134 |
+
frames_folder = os.path.join("output", "frames")
|
135 |
+
attention_folder = os.path.join("output", "attention")
|
136 |
+
|
137 |
+
os.makedirs(frames_folder, exist_ok=True)
|
138 |
+
os.makedirs(attention_folder, exist_ok=True)
|
139 |
+
|
140 |
+
fps = extract_frames_from_video(video, frames_folder)
|
141 |
+
|
142 |
+
inference(frames_folder,attention_folder)
|
143 |
+
generate_video_from_images(attention_folder, "video.mp4", fps)
|
144 |
+
|
145 |
+
return "video.mp4"
|
146 |
|
|
|
|
|
147 |
|
148 |
title = "Interactive demo: DINO"
|
149 |
description = "Demo for Facebook AI's DINO, a new method for self-supervised training of Vision Transformers. Using this method, they are capable of segmenting objects within an image without having ever been trained to do so. This can be observed by displaying the self-attention of the heads from the last layer for the [CLS] token query. This demo uses a ViT-S/8 trained with DINO. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
150 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.14294'>Emerging Properties in Self-Supervised Vision Transformers</a> | <a href='https://github.com/facebookresearch/dino'>Github Repo</a></p>"
|
151 |
+
iface = gr.Interface(fn=func,
|
152 |
+
inputs=gr.inputs.Video(type=None),
|
153 |
+
outputs="video",
|
|
|
154 |
title=title,
|
155 |
description=description,
|
156 |
+
article=article)
|
|
|
|