File size: 28,999 Bytes
67a8158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
import gradio as gr
import os
import PIL
from PIL import Image
from pathlib import Path
import numpy as np
import numpy.random as npr
from contextlib import nullcontext

import torch
import torchvision.transforms as tvtrans
from lib.cfg_helper import model_cfg_bank
from lib.model_zoo import get_model
from lib.model_zoo.ddim_vd import DDIMSampler_VD, DDIMSampler_VD_DualContext
from lib.model_zoo.ddim_dualcontext import DDIMSampler_DualContext

from lib.experiments.sd_default import color_adjust

n_sample_image = 2
n_sample_text = 4
cache_examples = True

class vd_inference(object):
    def __init__(self, type='official'):
        if type in ['dc', '2-flow']:
            cfgm_name = 'vd_dc_noema'
            sampler = DDIMSampler_DualContext
            pth = 'pretrained/vd-dc.pth'
        elif type in ['official', '4-flow']:
            cfgm_name = 'vd_noema'
            sampler = DDIMSampler_VD
            pth = 'pretrained/vd-official.pth'
        cfgm = model_cfg_bank()(cfgm_name)
        net = get_model()(cfgm)

        sd = torch.load(pth, map_location='cpu')
        net.load_state_dict(sd, strict=False)
        
        self.use_cuda = torch.cuda.is_available()
        if self.use_cuda:
            net.to('cuda')
        self.model_name = cfgm_name
        self.net = net
        self.sampler = sampler(net)

    def regularize_image(self, x):
        BICUBIC = PIL.Image.Resampling.BICUBIC
        if isinstance(x, str):
            x = Image.open(x).resize([512, 512], resample=BICUBIC)
            x = tvtrans.ToTensor()(x)
        elif isinstance(x, PIL.Image.Image):
            x = x.resize([512, 512], resample=BICUBIC)
            x = tvtrans.ToTensor()(x)
        elif isinstance(x, np.ndarray):
            x = PIL.Image.fromarray(x).resize([512, 512], resample=BICUBIC)
            x = tvtrans.ToTensor()(x)
        elif isinstance(x, torch.Tensor):
            pass
        else:
            assert False, 'Unknown image type'

        assert (x.shape[1]==512) & (x.shape[2]==512), \
            'Wrong image size'
        if self.use_cuda:
            x = x.to('cuda')
        return x

    def decode(self, z, xtype, ctype, color_adj='None', color_adj_to=None):
        net = self.net
        if xtype == 'image':
            x = net.autokl_decode(z)

            color_adj_flag = (color_adj!='None') and (color_adj is not None)
            color_adj_simple = color_adj=='Simple'
            color_adj_keep_ratio = 0.5

            if color_adj_flag and (ctype=='vision'):
                x_adj = []
                for xi in x:
                    color_adj_f = color_adjust(ref_from=(xi+1)/2, ref_to=color_adj_to)
                    xi_adj = color_adj_f((xi+1)/2, keep=color_adj_keep_ratio, simple=color_adj_simple)
                    x_adj.append(xi_adj)
                x = x_adj
            else:
                x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
                x = [tvtrans.ToPILImage()(xi) for xi in x]
            return x

        elif xtype == 'text':
            prompt_temperature = 1.0
            prompt_merge_same_adj_word = True
            x = net.optimus_decode(z, temperature=prompt_temperature)
            if prompt_merge_same_adj_word:
                xnew = []
                for xi in x:
                    xi_split = xi.split()
                    xinew = []
                    for idxi, wi in enumerate(xi_split):
                        if idxi!=0 and wi==xi_split[idxi-1]:
                            continue
                        xinew.append(wi)
                    xnew.append(' '.join(xinew))
                x = xnew
            return x

    def inference(self, xtype, cin, ctype, scale=7.5, n_samples=None, color_adj=None,):
        net = self.net
        sampler = self.sampler
        ddim_steps = 50
        ddim_eta = 0.0

        if xtype == 'image':
            n_samples = n_sample_image if n_samples is None else n_samples
        elif xtype == 'text':
            n_samples = n_sample_text if n_samples is None else n_samples

        if ctype in ['prompt', 'text']:
            c = net.clip_encode_text(n_samples * [cin])
            u = None
            if scale != 1.0:
                u = net.clip_encode_text(n_samples * [""])

        elif ctype in ['vision', 'image']:
            cin = self.regularize_image(cin)
            ctemp = cin*2 - 1
            ctemp = ctemp[None].repeat(n_samples, 1, 1, 1)
            c = net.clip_encode_vision(ctemp)
            u = None
            if scale != 1.0:
                dummy = torch.zeros_like(ctemp)
                u = net.clip_encode_vision(dummy)

        if xtype == 'image':
            h, w = [512, 512]
            shape = [n_samples, 4, h//8, w//8]
            z, _ = sampler.sample(
                steps=ddim_steps,
                shape=shape,
                conditioning=c,
                unconditional_guidance_scale=scale,
                unconditional_conditioning=u,
                xtype=xtype, ctype=ctype,
                eta=ddim_eta,
                verbose=False,)
            x = self.decode(z, xtype, ctype, color_adj=color_adj, color_adj_to=cin)
            return x

        elif xtype == 'text':
            n = 768
            shape = [n_samples, n]
            z, _ = sampler.sample(
                steps=ddim_steps,
                shape=shape,
                conditioning=c,
                unconditional_guidance_scale=scale,
                unconditional_conditioning=u,
                xtype=xtype, ctype=ctype,
                eta=ddim_eta,
                verbose=False,)
            x = self.decode(z, xtype, ctype)
            return x

    def application_disensemble(self, cin, n_samples=None, level=0, color_adj=None,):
        net = self.net
        scale = 7.5
        sampler = self.sampler
        ddim_steps = 50
        ddim_eta = 0.0
        n_samples = n_sample_image if n_samples is None else n_samples

        cin = self.regularize_image(cin)
        ctemp = cin*2 - 1
        ctemp = ctemp[None].repeat(n_samples, 1, 1, 1)
        c = net.clip_encode_vision(ctemp)
        u = None
        if scale != 1.0:
            dummy = torch.zeros_like(ctemp)
            u = net.clip_encode_vision(dummy)

        if level == 0:
            pass
        else:
            c_glb = c[:, 0:1]
            c_loc = c[:, 1: ]
            u_glb = u[:, 0:1]
            u_loc = u[:, 1: ]

            if level == -1:
                c_loc = self.remove_low_rank(c_loc, demean=True, q=50, q_remove=1)
                u_loc = self.remove_low_rank(u_loc, demean=True, q=50, q_remove=1)
            if level == -2:
                c_loc = self.remove_low_rank(c_loc, demean=True, q=50, q_remove=2)
                u_loc = self.remove_low_rank(u_loc, demean=True, q=50, q_remove=2)
            if level == 1:
                c_loc = self.find_low_rank(c_loc, demean=True, q=10)
                u_loc = self.find_low_rank(u_loc, demean=True, q=10)
            if level == 2:
                c_loc = self.find_low_rank(c_loc, demean=True, q=2)
                u_loc = self.find_low_rank(u_loc, demean=True, q=2)

            c = torch.cat([c_glb, c_loc], dim=1)
            u = torch.cat([u_glb, u_loc], dim=1)

        h, w = [512, 512]
        shape = [n_samples, 4, h//8, w//8]
        z, _ = sampler.sample(
            steps=ddim_steps,
            shape=shape,
            conditioning=c,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=u,
            xtype='image', ctype='vision',
            eta=ddim_eta,
            verbose=False,)
        x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=cin)
        return x

    def find_low_rank(self, x, demean=True, q=20, niter=10):
        if demean:
            x_mean = x.mean(-1, keepdim=True)
            x_input = x - x_mean
        else:
            x_input = x

        u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
        ss = torch.stack([torch.diag(si) for si in s])
        x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))        

        if demean:
            x_lowrank += x_mean
        return x_lowrank

    def remove_low_rank(self, x, demean=True, q=20, niter=10, q_remove=10):
        if demean:
            x_mean = x.mean(-1, keepdim=True)
            x_input = x - x_mean
        else:
            x_input = x

        u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
        s[:, 0:q_remove] = 0
        ss = torch.stack([torch.diag(si) for si in s])
        x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))        

        if demean:
            x_lowrank += x_mean
        return x_lowrank

    def application_dualguided(self, cim, ctx, n_samples=None, mixing=0.5, color_adj=None, ):
        net = self.net
        scale = 7.5
        sampler = DDIMSampler_VD_DualContext(net)
        ddim_steps = 50
        ddim_eta = 0.0
        n_samples = n_sample_image if n_samples is None else n_samples

        ctemp0 = self.regularize_image(cim)
        ctemp1 = ctemp0*2 - 1
        ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1)
        cim = net.clip_encode_vision(ctemp1)
        uim = None
        if scale != 1.0:
            dummy = torch.zeros_like(ctemp1)
            uim = net.clip_encode_vision(dummy)

        ctx = net.clip_encode_text(n_samples * [ctx])
        utx = None
        if scale != 1.0:
            utx = net.clip_encode_text(n_samples * [""])

        h, w = [512, 512]
        shape = [n_samples, 4, h//8, w//8]

        z, _ = sampler.sample_dc(
            steps=ddim_steps,
            shape=shape,
            first_conditioning=[uim, cim],
            second_conditioning=[utx, ctx],
            unconditional_guidance_scale=scale,
            xtype='image', 
            first_ctype='vision',
            second_ctype='prompt',
            eta=ddim_eta,
            verbose=False,
            mixed_ratio=(1-mixing), )
        x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=ctemp0)
        return x

    def application_i2t2i(self, cim, ctx_n, ctx_p, n_samples=None, color_adj=None,):
        net = self.net
        scale = 7.5
        sampler = DDIMSampler_VD_DualContext(net)
        ddim_steps = 50
        ddim_eta = 0.0
        prompt_temperature = 1.0
        n_samples = n_sample_image if n_samples is None else n_samples

        ctemp0 = self.regularize_image(cim)
        ctemp1 = ctemp0*2 - 1
        ctemp1 = ctemp1[None].repeat(n_samples, 1, 1, 1)
        cim = net.clip_encode_vision(ctemp1)
        uim = None
        if scale != 1.0:
            dummy = torch.zeros_like(ctemp1)
            uim = net.clip_encode_vision(dummy)

        n = 768
        shape = [n_samples, n]
        zt, _ = sampler.sample(
            steps=ddim_steps,
            shape=shape,
            conditioning=cim,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=uim,
            xtype='text', ctype='vision',
            eta=ddim_eta,
            verbose=False,)
        ztn = net.optimus_encode([ctx_n])
        ztp = net.optimus_encode([ctx_p])

        ztn_norm = ztn / ztn.norm(dim=1)
        zt_proj_mag = torch.matmul(zt, ztn_norm[0])
        zt_perp = zt - zt_proj_mag[:, None] * ztn_norm
        zt_newd = zt_perp + ztp
        ctx_new = net.optimus_decode(zt_newd, temperature=prompt_temperature)

        ctx_new = net.clip_encode_text(ctx_new)
        ctx_p = net.clip_encode_text([ctx_p])
        ctx_new = torch.cat([ctx_new, ctx_p.repeat(n_samples, 1, 1)], dim=1)
        utx_new = net.clip_encode_text(n_samples * [""])
        utx_new = torch.cat([utx_new, utx_new], dim=1)

        cim_loc = cim[:, 1: ]
        cim_loc_new = self.find_low_rank(cim_loc, demean=True, q=10)
        cim_new = cim_loc_new
        uim_new = uim[:, 1:]
        
        h, w = [512, 512]
        shape = [n_samples, 4, h//8, w//8]
        z, _ = sampler.sample_dc(
            steps=ddim_steps,
            shape=shape,
            first_conditioning=[uim_new, cim_new],
            second_conditioning=[utx_new, ctx_new],
            unconditional_guidance_scale=scale,
            xtype='image', 
            first_ctype='vision',
            second_ctype='prompt',
            eta=ddim_eta,
            verbose=False,
            mixed_ratio=0.33, )

        x = self.decode(z, 'image', 'vision', color_adj=color_adj, color_adj_to=ctemp0)
        return x

vd_inference = vd_inference('official')

def main(mode,
         image=None,
         prompt=None,
         nprompt=None,
         pprompt=None,
         color_adj=None,
         disentanglement_level=None,
         dual_guided_mixing=None,
         seed=0,):

    if seed<0:
        seed = 0
    np.random.seed(seed)
    torch.manual_seed(seed+100)

    if mode == 'Text-to-Image':
        if (prompt is None) or (prompt == ""):
            return None, None
        with torch.no_grad():
            rv = vd_inference.inference(
                xtype = 'image',
                cin = prompt,
                ctype = 'prompt', )
        return rv, None
    elif mode == 'Image-Variation':
        if image is None:
            return None, None
        with torch.no_grad():
            rv = vd_inference.inference(
                xtype = 'image',
                cin = image,
                ctype = 'vision',
                color_adj = color_adj,)
        return rv, None
    elif mode == 'Image-to-Text':
        if image is None:
            return None, None
        with torch.no_grad():
            rv = vd_inference.inference(
                xtype = 'text',
                cin = image,
                ctype = 'vision',)
        return None, '\n'.join(rv)
    elif mode == 'Text-Variation':
        if prompt is None:
            return None, None
        with torch.no_grad():
            rv = vd_inference.inference(
                xtype = 'text',
                cin = prompt,
                ctype = 'prompt',)
        return None, '\n'.join(rv)
    elif mode == 'Disentanglement':
        if image is None:
            return None, None
        with torch.no_grad():
            rv = vd_inference.application_disensemble(
                cin = image,
                level = disentanglement_level,
                color_adj = color_adj,)
        return rv, None
    elif mode == 'Dual-Guided':
        if (image is None) or (prompt is None) or (prompt==""):
            return None, None
        with torch.no_grad():
            rv = vd_inference.application_dualguided(
                cim = image,
                ctx = prompt,
                mixing = dual_guided_mixing,
                color_adj = color_adj,)
        return rv, None
    elif mode == 'Latent-I2T2I':
        if (image is None) or (nprompt is None) or (nprompt=="") \
                or (pprompt is None) or (pprompt==""):
            return None, None
        with torch.no_grad():
            rv = vd_inference.application_i2t2i(
                cim = image,
                ctx_n = nprompt,
                ctx_p = pprompt,
                color_adj = color_adj,)
        return rv, None
    else:
        assert False, "No such mode!"

def get_instruction(mode):
    t2i_instruction = ["Generate image from text prompt."]
    i2i_instruction = [
        "Generate image conditioned on reference image.", 
        "Color Calibration provide an opinion to adjust image color according to reference image.", ]
    i2t_instruction = ["Generate text from reference image."]
    t2t_instruction = ["Generate text from reference text prompt. (Model insufficiently trained, thus results are still experimental)"]
    dis_instruction = [
        "Generate a variation of reference image that disentangled for semantic or style.",
        "Color Calibration provide an opinion to adjust image color according to reference image.",
        "Disentanglement level controls the level of focus towards semantic (-2, -1) or style (1 2). Level 0 serves as Image-Variation.", ]
    dug_instruction = [
        "Generate image from dual guidance of reference image and text prompt.",
        "Color Calibration provide an opinion to adjust image color according to reference image.",
        "Guidance Mixing provides linear balances between image and text context. (0 towards image, 1 towards text)", ]
    iti_instruction = [
        "Generate image variations via image-to-text, text-latent-editing, and then text-to-image. (Still under exploration)",
        "Color Calibration provide an opinion to adjust image color according to reference image.",
        "Input prompt that will be substract from text/text latent code.",
        "Input prompt that will be added to text/text latent code.", ]

    if mode == "Text-to-Image":
        return '\n'.join(t2i_instruction)
    elif mode == "Image-Variation":
        return '\n'.join(i2i_instruction)
    elif mode == "Image-to-Text":
        return '\n'.join(i2t_instruction)
    elif mode == "Text-Variation":
        return '\n'.join(t2t_instruction)
    elif mode == "Disentanglement":
        return '\n'.join(dis_instruction)
    elif mode == "Dual-Guided":
        return '\n'.join(dug_instruction)
    elif mode == "Latent-I2T2I":
        return '\n'.join(iti_instruction)

#############
# Interface #
#############

if True:
    img_output = gr.Gallery(label="Image Result").style(grid=n_sample_image)
    txt_output = gr.Textbox(lines=4, label='Text Result', visible=False)

    with gr.Blocks() as demo:
        gr.HTML(
            """
            <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
            <h1 style="font-weight: 900; font-size: 3rem;">
                Versatile Diffusion
            </h1>
            <br>
            <h2 style="font-weight: 450; font-size: 1rem;">
            We built <b>Versatile Diffusion (VD), the first unified multi-flow multimodal diffusion framework</b>, as a step towards <b>Universal Generative AI</b>. 
            VD can natively support image-to-text, image-variation, text-to-image, and text-variation, 
            and can be further extended to other applications such as 
            semantic-style disentanglement, image-text dual-guided generation, latent image-to-text-to-image editing, and more. 
            Future versions will support more modalities such as speech, music, video and 3D. 
            </h2>
            <br>
            <h3>Xingqian Xu, Atlas Wang, Eric Zhang, Kai Wang, 
            and <a href="https://www.humphreyshi.com/home">Humphrey Shi</a> 
            [<a href="https://arxiv.org/abs/2211.08332" style="color:blue;">arXiv</a>] 
            [<a href="https://github.com/SHI-Labs/Versatile-Diffusion" style="color:blue;">GitHub</a>]
            </h3>
            </div>
            """)
        mode_input = gr.Radio([
            "Text-to-Image", "Image-Variation", "Image-to-Text", "Text-Variation",
            "Disentanglement", "Dual-Guided", "Latent-I2T2I"], value='Text-to-Image', label="VD Flows and Applications")

        instruction = gr.Textbox(get_instruction("Text-to-Image"), label='Info')

        with gr.Row():
            with gr.Column():
                img_input = gr.Image(label='Image Input', visible=False)
                txt_input = gr.Textbox(lines=4, placeholder="Input prompt...", label='Text Input')
                ntxt_input = gr.Textbox(label='Remove Prompt', visible=False)
                ptxt_input = gr.Textbox(label='Add Prompt', visible=False)
                coladj_input = gr.Radio(["None", "Simple"], value='Simple', label="Color Calibration", visible=False)
                dislvl_input = gr.Slider(-2, 2, value=0, step=1, label="Disentanglement level", visible=False)
                dguide_input = gr.Slider(0, 1, value=0.5, step=0.01, label="Guidance Mixing", visible=False)
                seed_input = gr.Number(100, label="Seed", precision=0)

                btn = gr.Button("Run")
                btn.click(
                    main, 
                    inputs=[
                        mode_input,
                        img_input,
                        txt_input,
                        ntxt_input,
                        ptxt_input,
                        coladj_input,
                        dislvl_input,
                        dguide_input,
                        seed_input, ],
                    outputs=[img_output, txt_output])

            with gr.Column():
                img_output.render()
                txt_output.render()

        example_mode = [
            "Text-to-Image", 
            "Image-Variation", 
            "Image-to-Text", 
            "Text-Variation", 
            "Disentanglement", 
            "Dual-Guided", 
            "Latent-I2T2I"]

        def get_example(mode):
            if mode == 'Text-to-Image':
                case = [
                    ['a dream of a village in china, by Caspar David Friedrich, matte painting trending on artstation HQ', 23],
                    ['a beautiful grand nebula in the universe', 24],
                    ['heavy arms gundam penguin mech', 25],
                ]
            elif mode == "Image-Variation":
                case = [
                    ['assets/space.jpg', 'None', 26],
                    ['assets/train.jpg', 'Simple', 27],
                ]
            elif mode == "Image-to-Text":
                case = [
                    ['assets/boy_and_girl.jpg' , 28],
                    ['assets/house_by_lake.jpg', 29],
                ]
            elif mode == "Text-Variation":
                case = [
                    ['a dream of a village in china, by Caspar David Friedrich, matte painting trending on artstation HQ' , 32],
                    ['a beautiful grand nebula in the universe' , 33],
                    ['heavy arms gundam penguin mech', 34],
                ]
            elif mode == "Disentanglement":
                case = [
                    ['assets/vermeer.jpg', 'Simple', -2, 30],
                    ['assets/matisse.jpg', 'Simple',  2, 31],
                ]
            elif mode == "Dual-Guided":
                case = [
                    ['assets/benz.jpg',    'cyberpunk 2077', 'Simple', 0.75, 22],
                    ['assets/vermeer.jpg', 'a girl with a diamond necklace',  'Simple', 0.66, 21],
                ]
            elif mode == "Latent-I2T2I":
                case = [
                    ['assets/ghibli.jpg',  'white house', 'tall castle', 'Simple', 20],
                    ['assets/matisse.jpg', 'fruits and bottles on the table', 'flowers on the table', 'Simple', 21],
                ]
            else:
                raise ValueError
            case = [[mode] + casei for casei in case]
            return case

        def get_example_iof(mode):
            if mode == 'Text-to-Image':
                inps = [txt_input, seed_input]
                oups = [img_output]
                fn = lambda m, x, y: \
                    main(mode=m, prompt=x, seed=y)[0]
            elif mode == "Image-Variation":
                inps = [img_input, coladj_input, seed_input]
                oups = [img_output]
                fn = lambda m, x, y, z: \
                    main(mode=m, image=x, color_adj=y, seed=z)[0]
            elif mode == "Image-to-Text":
                inps = [img_input, seed_input]
                oups = [txt_output]
                fn = lambda m, x, y: \
                    main(mode=m, image=x, seed=y)[1]
            elif mode == "Text-Variation":
                inps = [txt_input, seed_input]
                oups = [txt_output]
                fn = lambda m, x, y: \
                    main(mode=m, prompt=x, seed=y)[1]
            elif mode == "Disentanglement":
                inps = [img_input, coladj_input, dislvl_input, seed_input]
                oups = [img_output]
                fn = lambda m, x, y, z, w: \
                    main(mode=m, image=x, color_adj=y, disentanglement_level=z, seed=w)[0]
            elif mode == "Dual-Guided":
                inps = [img_input, txt_input, coladj_input, dguide_input, seed_input]
                oups = [img_output]
                fn = lambda m, x, y, z, w, u: \
                    main(mode=m, image=x, prompt=y, color_adj=z, dual_guided_mixing=w, seed=u)[0]
            elif mode == "Latent-I2T2I":
                inps = [img_input, ntxt_input, ptxt_input, coladj_input, seed_input]
                oups = [img_output]
                fn = lambda m, x, y, z, w, u: \
                    main(mode=m, image=x, nprompt=y, pprompt=z, color_adj=w, seed=u)[0]
            else:
                raise ValueError
            return [mode_input]+inps, oups, fn

        with gr.Row():
            for emode in example_mode[0:4]:
                with gr.Column():
                    gr.Examples(
                        label=emode+' Examples',
                        examples=get_example(emode),
                        inputs=get_example_iof(emode)[0],
                        outputs=get_example_iof(emode)[1],
                        fn = get_example_iof(emode)[2],
                        cache_examples=cache_examples),
        with gr.Row():
            for emode in example_mode[4:7]:
                with gr.Column():
                    gr.Examples(
                        label=emode+' Examples',
                        examples=get_example(emode),
                        inputs=get_example_iof(emode)[0],
                        outputs=get_example_iof(emode)[1],
                        fn = get_example_iof(emode)[2],
                        cache_examples=cache_examples),

        mode_input.change(
            fn=lambda x: gr.update(value=get_instruction(x)),
            inputs=mode_input,
            outputs=instruction,)

        mode_input.change(
            fn=lambda x: gr.update(visible=(x not in ['Text-to-Image', 'Text-Variation'])),
            inputs=mode_input,
            outputs=img_input,)

        mode_input.change(
            fn=lambda x: gr.update(visible=(x in ['Text-to-Image', 'Text-Variation', 'Dual-Guided'])),
            inputs=mode_input,
            outputs=txt_input,)

        mode_input.change(
            fn=lambda x: gr.update(visible=(x in ['Latent-I2T2I'])),
            inputs=mode_input,
            outputs=ntxt_input,)
        mode_input.change(
            fn=lambda x: gr.update(visible=(x in ['Latent-I2T2I'])),
            inputs=mode_input,
            outputs=ptxt_input,)

        mode_input.change(
            fn=lambda x: gr.update(visible=(x not in ['Text-to-Image', 'Image-to-Text', 'Text-Variation'])),
            inputs=mode_input,
            outputs=coladj_input,)

        mode_input.change(
            fn=lambda x: gr.update(visible=(x=='Disentanglement')),
            inputs=mode_input,
            outputs=dislvl_input,)

        mode_input.change(
            fn=lambda x: gr.update(visible=(x=='Dual-Guided')),
            inputs=mode_input,
            outputs=dguide_input,)

        mode_input.change(
            fn=lambda x: gr.update(visible=(x not in ['Image-to-Text', 'Text-Variation'])),
            inputs=mode_input,
            outputs=img_output,)
        mode_input.change(
            fn=lambda x: gr.update(visible=(x in ['Image-to-Text', 'Text-Variation'])),
            inputs=mode_input,
            outputs=txt_output,)

        gr.HTML(
            """
            <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
            <h3>
            <b>Caution</b>: 
            We would like the raise the awareness of users of this demo of its potential issues and concerns.
            Like previous large foundation models, Versatile Diffusion could be problematic in some cases, partially due to the imperfect training data and pretrained network (VAEs / context encoders) with limited scope.
            In its future research phase, VD may do better on tasks such as text-to-image, image-to-text, etc., with the help of more powerful VAEs, more sophisticated network designs, and more cleaned data.
            So far, we keep all features available for research testing both to show the great potential of the VD framework and to collect important feedback to improve the model in the future.
            We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors.
            </h3>
            <br>
            <h3>
            <b>Biases and content acknowledgement</b>:
            Beware that VD may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence. 
            VD was trained on the LAION-2B dataset, which scraped non-curated online images and text, and may contained unintended exceptions as we removed illegal content. 
            VD in this demo is meant only for research purposes.
            </h3>
            </div>
            """)

    # demo.launch(share=True)
    demo.launch(debug=True)