File size: 45,609 Bytes
67a8158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
import copy
from functools import partial
from contextlib import contextmanager
from lib.model_zoo.common.get_model import get_model, register
from lib.log_service import print_log

version = '0'
symbol = 'sd'

from .diffusion_utils import \
    count_params, extract_into_tensor, make_beta_schedule
from .distributions import normal_kl, DiagonalGaussianDistribution
from .ema import LitEma

def highlight_print(info):
    print_log('')
    print_log(''.join(['#']*(len(info)+4)))
    print_log('# '+info+' #')
    print_log(''.join(['#']*(len(info)+4)))
    print_log('')

class DDPM(nn.Module):
    def __init__(self,
                 unet_config,
                 timesteps=1000,
                 use_ema=True,

                 beta_schedule="linear",
                 beta_linear_start=1e-4,
                 beta_linear_end=2e-2,
                 loss_type="l2",

                 clip_denoised=True,
                 cosine_s=8e-3,
                 given_betas=None,

                 l_simple_weight=1.,
                 original_elbo_weight=0.,
                 
                 v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
                 parameterization="eps",
                 use_positional_encodings=False,
                 learn_logvar=False, 
                 logvar_init=0, ):

        super().__init__()
        assert parameterization in ["eps", "x0"], \
            'currently only supporting "eps" and "x0"'
        self.parameterization = parameterization
        highlight_print("Running in {} mode".format(self.parameterization))

        self.cond_stage_model = None
        self.clip_denoised = clip_denoised
        self.use_positional_encodings = use_positional_encodings

        from collections import OrderedDict
        self.model = nn.Sequential(OrderedDict([('diffusion_model', get_model()(unet_config))]))
        # TODO: Remove this ugly trick to match SD with deprecated version, after no bug with the module.

        self.use_ema = use_ema
        if self.use_ema:
            self.model_ema = LitEma(self.model)
            print_log(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")

        self.v_posterior = v_posterior
        self.l_simple_weight = l_simple_weight
        self.original_elbo_weight = original_elbo_weight

        self.register_schedule(
            given_betas=given_betas, 
            beta_schedule=beta_schedule, 
            timesteps=timesteps,
            linear_start=beta_linear_start, 
            linear_end=beta_linear_end, 
            cosine_s=cosine_s)

        self.loss_type = loss_type
        self.learn_logvar = learn_logvar
        self.logvar = torch.full(
            fill_value=logvar_init, size=(self.num_timesteps,))
        if self.learn_logvar:
            self.logvar = nn.Parameter(self.logvar, requires_grad=True)

    def register_schedule(self, 
                          given_betas=None, 
                          beta_schedule="linear", 
                          timesteps=1000,
                          linear_start=1e-4, 
                          linear_end=2e-2, 
                          cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
                                       cosine_s=cosine_s)
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end
        assert alphas_cumprod.shape[0] == self.num_timesteps, \
            'alphas have to be defined for each timestep'

        to_torch = partial(torch.tensor, dtype=torch.float32)

        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
                    1. - alphas_cumprod) + self.v_posterior * betas
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer('posterior_variance', to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
        self.register_buffer('posterior_mean_coef1', to_torch(
            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
        self.register_buffer('posterior_mean_coef2', to_torch(
            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))

        if self.parameterization == "eps":
            lvlb_weights = self.betas ** 2 / (
                        2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
        elif self.parameterization == "x0":
            lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
        else:
            raise NotImplementedError("mu not supported")
        # TODO how to choose this term
        lvlb_weights[0] = lvlb_weights[1]
        self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
        assert not torch.isnan(self.lvlb_weights).all()

    @contextmanager
    def ema_scope(self, context=None):
        if self.use_ema:
            self.model_ema.store(self.model.parameters())
            self.model_ema.copy_to(self.model)
            if context is not None:
                print_log(f"{context}: Switched to EMA weights")
        try:
            yield None
        finally:
            if self.use_ema:
                self.model_ema.restore(self.model.parameters())
                if context is not None:
                    print_log(f"{context}: Restored training weights")

    def q_mean_variance(self, x_start, t):
        """
        Get the distribution q(x_t | x_0).
        :param x_start: the [N x C x ...] tensor of noiseless inputs.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
        """
        mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
        variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
        log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
        return mean, variance, log_variance

    def predict_start_from_noise(self, x_t, t, noise):
        value1 = extract_into_tensor(
            self.sqrt_recip_alphas_cumprod, t, x_t.shape)
        value2 = extract_into_tensor(
            self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
        return value1*x_t -value2*noise

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
                extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
                extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, clip_denoised: bool):
        model_out = self.model(x, t)
        if self.parameterization == "eps":
            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
        elif self.parameterization == "x0":
            x_recon = model_out
        if clip_denoised:
            x_recon.clamp_(-1., 1.)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def p_sample_loop(self, shape, return_intermediates=False):
        device = self.betas.device
        b = shape[0]
        img = torch.randn(shape, device=device)
        intermediates = [img]
        for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
            img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
                                clip_denoised=self.clip_denoised)
            if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
                intermediates.append(img)
        if return_intermediates:
            return img, intermediates
        return img

    @torch.no_grad()
    def sample(self, batch_size=16, return_intermediates=False):
        image_size = self.image_size
        channels = self.channels
        return self.p_sample_loop((batch_size, channels, image_size, image_size),
                                  return_intermediates=return_intermediates)

    def q_sample(self, x_start, t, noise=None):
        noise = torch.randn_like(x_start) if noise is None else noise
        return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)

    def get_loss(self, pred, target, mean=True):
        if self.loss_type == 'l1':
            loss = (target - pred).abs()
            if mean:
                loss = loss.mean()
        elif self.loss_type == 'l2':
            if mean:
                loss = torch.nn.functional.mse_loss(target, pred)
            else:
                loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
        else:
            raise NotImplementedError("unknown loss type '{loss_type}'")

        return loss

    def p_losses(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        model_out = self.model(x_noisy, t)

        loss_dict = {}
        if self.parameterization == "eps":
            target = noise
        elif self.parameterization == "x0":
            target = x_start
        else:
            raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")

        loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])

        log_prefix = 'train' if self.training else 'val'

        loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
        loss_simple = loss.mean() * self.l_simple_weight

        loss_vlb = (self.lvlb_weights[t] * loss).mean()
        loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})

        loss = loss_simple + self.original_elbo_weight * loss_vlb

        loss_dict.update({f'{log_prefix}/loss': loss})

        return loss, loss_dict

    def forward(self, x, *args, **kwargs):
        # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
        # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
        return self.p_losses(x, t, *args, **kwargs)

    def on_train_batch_end(self, *args, **kwargs):
        if self.use_ema:
            self.model_ema(self.model)

@register('sd_t2i', version)
class SD_T2I(DDPM):
    def __init__(self,
                 first_stage_config,
                 cond_stage_config,
                 num_timesteps_cond=None,
                 cond_stage_trainable=False,
                 scale_factor=1.0,
                 scale_by_std=False,
                 *args, 
                 **kwargs):
        self.num_timesteps_cond = num_timesteps_cond \
            if num_timesteps_cond is not None else 1
        self.scale_by_std = scale_by_std
        assert self.num_timesteps_cond <= kwargs['timesteps']

        super().__init__(*args, **kwargs)

        self.first_stage_model = get_model()(first_stage_config)
        self.cond_stage_model = get_model()(cond_stage_config)

        self.concat_mode = 'crossattn'
        self.cond_stage_trainable = cond_stage_trainable
        if not scale_by_std:
            self.scale_factor = scale_factor
        else:
            self.register_buffer('scale_factor', torch.tensor(scale_factor))
        self.device = 'cpu'

    def to(self, device):
        self.device = device
        super().to(device)

    @torch.no_grad()
    def on_train_batch_start(self, x):
        # only for very first batch
        if self.scale_by_std:
            assert self.scale_factor == 1., \
                'rather not use custom rescaling and std-rescaling simultaneously'
            # set rescale weight to 1./std of encodings
            encoder_posterior = self.encode_first_stage(x)
            z = self.get_first_stage_encoding(encoder_posterior).detach()
            del self.scale_factor
            self.register_buffer('scale_factor', 1. / z.flatten().std())
            highlight_print("setting self.scale_factor to {}".format(self.scale_factor))

    def register_schedule(self,
                          given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)

        self.shorten_cond_schedule = self.num_timesteps_cond > 1
        if self.shorten_cond_schedule:
            self.make_cond_schedule()

    def make_cond_schedule(self, ):
        self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
        ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
        self.cond_ids[:self.num_timesteps_cond] = ids

    @torch.no_grad()
    def encode_image(self, im):
        encoder_posterior = self.first_stage_model.encode(im)
        z = self.get_first_stage_encoding(encoder_posterior).detach()
        return z

    def get_first_stage_encoding(self, encoder_posterior):
        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
            z = encoder_posterior.sample()
        elif isinstance(encoder_posterior, torch.Tensor):
            z = encoder_posterior
        else:
            raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
        return self.scale_factor * z

    @torch.no_grad()
    def decode_image(self, z, predict_cids=False, force_not_quantize=False):
        z = 1. / self.scale_factor * z
        return self.first_stage_model.decode(z)

    @torch.no_grad()
    def encode_text(self, text):
        return self.get_learned_conditioning(text)

    def get_learned_conditioning(self, c):
        if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
            c = self.cond_stage_model.encode(c)
            if isinstance(c, DiagonalGaussianDistribution):
                c = c.mode()
        else:
            c = self.cond_stage_model(c)
        return c

    def forward(self, x, c, noise=None):
        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
        if self.cond_stage_trainable:
            c = self.get_learned_conditioning(c)
        return self.p_losses(x, c, t, noise)

    def apply_model(self, x_noisy, t, cond):
        return self.model.diffusion_model(x_noisy, t, cond)

    def p_losses(self, x_start, cond, t, noise=None):
        noise = torch.randn_like(x_start) if noise is None else noise
        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        model_output = self.apply_model(x_noisy, t, cond)

        loss_dict = {}
        prefix = 'train' if self.training else 'val'

        if self.parameterization == "x0":
            target = x_start
        elif self.parameterization == "eps":
            target = noise
        else:
            raise NotImplementedError()

        loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
        loss_dict['loss_simple'] = loss_simple.mean()

        logvar_t = self.logvar[t].to(self.device)
        loss = loss_simple / torch.exp(logvar_t) + logvar_t

        if self.learn_logvar:
            loss_dict['loss_gamma'] = loss.mean()
            loss_dict['logvar'    ] = self.logvar.data.mean()

        loss = self.l_simple_weight * loss.mean()

        loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
        loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
        loss_dict['loss_vlb'] = loss_vlb

        loss += (self.original_elbo_weight * loss_vlb)
        loss_dict.update({'Loss': loss})

        return loss, loss_dict

    def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
        return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
               extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)

    def _prior_bpd(self, x_start):
        """
        Get the prior KL term for the variational lower-bound, measured in
        bits-per-dim.
        This term can't be optimized, as it only depends on the encoder.
        :param x_start: the [N x C x ...] tensor of inputs.
        :return: a batch of [N] KL values (in bits), one per batch element.
        """
        batch_size = x_start.shape[0]
        t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
        qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
        kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
        return mean_flat(kl_prior) / np.log(2.0)

    def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
                        return_x0=False, score_corrector=None, corrector_kwargs=None):
        t_in = t
        model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)

        if score_corrector is not None:
            assert self.parameterization == "eps"
            model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)

        if return_codebook_ids:
            model_out, logits = model_out

        if self.parameterization == "eps":
            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
        elif self.parameterization == "x0":
            x_recon = model_out
        else:
            raise NotImplementedError()

        if clip_denoised:
            x_recon.clamp_(-1., 1.)
        if quantize_denoised:
            x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        if return_codebook_ids:
            return model_mean, posterior_variance, posterior_log_variance, logits
        elif return_x0:
            return model_mean, posterior_variance, posterior_log_variance, x_recon
        else:
            return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
                 return_codebook_ids=False, quantize_denoised=False, return_x0=False,
                 temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
        b, *_, device = *x.shape, x.device
        outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
                                       return_codebook_ids=return_codebook_ids,
                                       quantize_denoised=quantize_denoised,
                                       return_x0=return_x0,
                                       score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
        if return_codebook_ids:
            raise DeprecationWarning("Support dropped.")
            model_mean, _, model_log_variance, logits = outputs
        elif return_x0:
            model_mean, _, model_log_variance, x0 = outputs
        else:
            model_mean, _, model_log_variance = outputs

        noise = noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))

        if return_codebook_ids:
            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
        if return_x0:
            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
        else:
            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
                              img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
                              score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
                              log_every_t=None):
        if not log_every_t:
            log_every_t = self.log_every_t
        timesteps = self.num_timesteps
        if batch_size is not None:
            b = batch_size if batch_size is not None else shape[0]
            shape = [batch_size] + list(shape)
        else:
            b = batch_size = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=self.device)
        else:
            img = x_T
        intermediates = []
        if cond is not None:
            if isinstance(cond, dict):
                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
            else:
                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]

        if start_T is not None:
            timesteps = min(timesteps, start_T)
        iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
                        total=timesteps) if verbose else reversed(
            range(0, timesteps))
        if type(temperature) == float:
            temperature = [temperature] * timesteps

        for i in iterator:
            ts = torch.full((b,), i, device=self.device, dtype=torch.long)
            if self.shorten_cond_schedule:
                assert self.model.conditioning_key != 'hybrid'
                tc = self.cond_ids[ts].to(cond.device)
                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))

            img, x0_partial = self.p_sample(img, cond, ts,
                                            clip_denoised=self.clip_denoised,
                                            quantize_denoised=quantize_denoised, return_x0=True,
                                            temperature=temperature[i], noise_dropout=noise_dropout,
                                            score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
            if mask is not None:
                assert x0 is not None
                img_orig = self.q_sample(x0, ts)
                img = img_orig * mask + (1. - mask) * img

            if i % log_every_t == 0 or i == timesteps - 1:
                intermediates.append(x0_partial)
            if callback: callback(i)
            if img_callback: img_callback(img, i)
        return img, intermediates

    @torch.no_grad()
    def p_sample_loop(self, cond, shape, return_intermediates=False,
                      x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
                      mask=None, x0=None, img_callback=None, start_T=None,
                      log_every_t=None):

        if not log_every_t:
            log_every_t = self.log_every_t
        device = self.betas.device
        b = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=device)
        else:
            img = x_T

        intermediates = [img]
        if timesteps is None:
            timesteps = self.num_timesteps

        if start_T is not None:
            timesteps = min(timesteps, start_T)
        iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
            range(0, timesteps))

        if mask is not None:
            assert x0 is not None
            assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match

        for i in iterator:
            ts = torch.full((b,), i, device=device, dtype=torch.long)
            if self.shorten_cond_schedule:
                assert self.model.conditioning_key != 'hybrid'
                tc = self.cond_ids[ts].to(cond.device)
                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))

            img = self.p_sample(img, cond, ts,
                                clip_denoised=self.clip_denoised,
                                quantize_denoised=quantize_denoised)
            if mask is not None:
                img_orig = self.q_sample(x0, ts)
                img = img_orig * mask + (1. - mask) * img

            if i % log_every_t == 0 or i == timesteps - 1:
                intermediates.append(img)
            if callback: callback(i)
            if img_callback: img_callback(img, i)

        if return_intermediates:
            return img, intermediates
        return img

    @torch.no_grad()
    def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
               verbose=True, timesteps=None, quantize_denoised=False,
               mask=None, x0=None, shape=None,**kwargs):
        if shape is None:
            shape = (batch_size, self.channels, self.image_size, self.image_size)
        if cond is not None:
            if isinstance(cond, dict):
                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
            else:
                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
        return self.p_sample_loop(cond,
                                  shape,
                                  return_intermediates=return_intermediates, x_T=x_T,
                                  verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
                                  mask=mask, x0=x0)

@register('sd_t2i_split_trans_pg', version)
class SD_T2I_SplitTransPG(SD_T2I):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.parameter_group = {
            # 'first_stage_model' : self.first_stage_model,
            # 'cond_stage_model' : self.cond_stage_model,
            'transformers' : [v for n, v in self.model.named_parameters() if n.find('transformer_blocks')!=-1],
            'other' :[v for n, v in self.model.named_parameters() if n.find('transformer_blocks')==-1],
        }

@register('sd_dual_crossattn', version)
class SD_Dual_CrossAttn(SD_T2I):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        def is_part_of_trans(name):
            if name.find('.1.norm')!=-1:
                return True
            if name.find('.1.proj_in')!=-1:
                return True
            if name.find('.1.transformer_blocks')!=-1:
                return True
            if name.find('.1.proj_out')!=-1:
                return True
            return False

        self.parameter_group = {
            'transformers' : [v for n, v in self.model.named_parameters() if is_part_of_trans(n)],
            'other' :[v for n, v in self.model.named_parameters() if not is_part_of_trans(n)],
        }

    def apply_model(self, x_noisy, t, cond, cond_type):
        if cond_type in ['prompt', 'text']:
            which_attn = 0
        elif cond_type in ['vision', 'visual', 'image']:
            which_attn = 1
        elif isinstance(cond_type, float):
            assert 0 < cond_type < 1, \
                'A special cond_type that will doing a random mix between two input condition, '\
                'rand() < cond_type is text, else visual'
            which_attn = cond_type
        else:
            assert False
        return self.model.diffusion_model(x_noisy, t, cond, which_attn=which_attn)

    def p_losses(self, x_start, cond, t, noise=None, cond_type=None):
        noise = torch.randn_like(x_start) if noise is None else noise
        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        model_output = self.apply_model(x_noisy, t, cond, cond_type=cond_type)

        loss_dict = {}
        prefix = 'train' if self.training else 'val'

        if self.parameterization == "x0":
            target = x_start
        elif self.parameterization == "eps":
            target = noise
        else:
            raise NotImplementedError()

        loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
        loss_dict['loss_simple'] = loss_simple.mean()

        logvar_t = self.logvar[t].to(self.device)
        loss = loss_simple / torch.exp(logvar_t) + logvar_t

        if self.learn_logvar:
            loss_dict['loss_gamma'] = loss.mean()
            loss_dict['logvar'    ] = self.logvar.data.mean()

        loss = self.l_simple_weight * loss.mean()

        loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
        loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
        loss_dict['loss_vlb'] = loss_vlb

        loss += (self.original_elbo_weight * loss_vlb)
        loss_dict.update({'Loss': loss})

        return loss, loss_dict

    @torch.no_grad()
    def clip_encode_text(self, text):
        clip_encode_type = self.cond_stage_model.encode_type
        self.cond_stage_model.encode_type = 'encode_text'
        embedding = self.get_learned_conditioning(text)
        self.cond_stage_model.encode_type = clip_encode_type
        return embedding

    @torch.no_grad()
    def clip_encode_vision(self, vision, encode_type='encode_vision'):
        clip_encode_type = self.cond_stage_model.encode_type
        self.cond_stage_model.encode_type = encode_type
        if isinstance(vision, torch.Tensor):
            vision = ((vision+1)/2).to('cpu').numpy()
            vision = np.transpose(vision, (0, 2, 3, 1))
            vision = [vi for vi in vision]
        embedding = self.get_learned_conditioning(vision)
        self.cond_stage_model.encode_type = clip_encode_type
        return embedding

    def get_learned_conditioning(self, c):
        if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
            c = self.cond_stage_model.encode(c)
            if isinstance(c, DiagonalGaussianDistribution):
                c = c.mode()
        else:
            c = self.cond_stage_model(c)
        return c

    def forward(self, x, c, noise=None, cond_type=None):
        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
        if self.cond_stage_trainable:
            c = self.get_learned_conditioning(c)
        return self.p_losses(x, c, t, noise, cond_type=cond_type)

@register('sd_variation', version)
class SD_Variation(SD_T2I):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        def is_part_of_trans(name):
            if name.find('.1.norm')!=-1:
                return True
            if name.find('.1.proj_in')!=-1:
                return True
            if name.find('.1.transformer_blocks')!=-1:
                return True
            if name.find('.1.proj_out')!=-1:
                return True
            return False

        self.parameter_group = {
            'transformers' : [v for n, v in self.model.named_parameters() if is_part_of_trans(n)],
            'other' :[v for n, v in self.model.named_parameters() if not is_part_of_trans(n)],
        }

        self.encode_image = None
        self.encode_text = None
        self._predict_eps_from_xstart = None
        self._prior_bpd = None
        self.p_mean_variance = None
        self.p_sample = None
        self.progressive_denoising = None
        self.p_sample_loop = None
        self.sample = None

    @torch.no_grad()
    def encode_input(self, im):
        encoder_posterior = self.first_stage_model.encode(im)
        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
            z = encoder_posterior.sample()
        elif isinstance(encoder_posterior, torch.Tensor):
            z = encoder_posterior
        else:
            raise NotImplementedError("Encoder_posterior of type '{}' not yet implemented".format(type(encoder_posterior)))
        return z * self.scale_factor

    @torch.no_grad()
    def decode_latent(self, z):
        z = 1. / self.scale_factor * z
        return self.first_stage_model.decode(z)

    @torch.no_grad()
    def clip_encode_vision(self, vision):
        if isinstance(vision, list):
            if not isinstance(vision[0], torch.Tensor):
                import torchvision.transforms as tvtrans
                vision = [tvtrans.ToTensor()(i) for i in vision]
            vh = torch.stack(vision)
        elif isinstance(vision, torch.Tensor):
            vh = vision.unsqueeze(0) if (vision.shape==3) else vision
            assert len(vh.shape) == 4
        else:
            raise ValueError
        vh = vh.to(self.device)
        return self.encode_conditioning(vh)

    # legacy
    def get_learned_conditioning(self, c):
        return self.encode_conditioning(c)

    def encode_conditioning(self, c):
        return self.cond_stage_model.encode(c)

    def forward(self, x, c, noise=None):
        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
        if self.cond_stage_trainable:
            c = self.encode_conditioning(c)
        return self.p_losses(x, c, t, noise)

@register('sd_all_in_one', version)
class SD_ALL_IN_ONE(DDPM):
    def __init__(self,
                 autokl_cfg,
                 optimus_cfg,
                 clip_cfg,
                 scale_factor=1.0,
                 scale_by_std=False,
                 *args, 
                 **kwargs):
        self.scale_by_std = scale_by_std
        super().__init__(*args, **kwargs)

        self.autokl = get_model()(autokl_cfg)
        self.optimus = get_model()(optimus_cfg)
        self.clip = get_model()(clip_cfg)

        self.concat_mode = 'crossattn'
        if not scale_by_std:
            self.scale_factor = scale_factor
        else:
            self.register_buffer('scale_factor', torch.tensor(scale_factor))
        self.device = 'cpu'
        self.parameter_group = self.create_parameter_group()
        debug = 1

    def create_parameter_group(self):
        def is_part_of_unet_image(name):
            if name.find('.unet_image.')!=-1:
                return True
            return False
        def is_part_of_unet_text(name):
            if name.find('.unet_text.')!=-1:
                return True
            return False
        def is_part_of_trans(name):
            if name.find('.1.norm')!=-1:
                return True
            if name.find('.1.proj_in')!=-1:
                return True
            if name.find('.1.transformer_blocks')!=-1:
                return True
            if name.find('.1.proj_out')!=-1:
                return True
            return False
        parameter_group = {
            'image_trans' : [],
            'image_rest'  : [],
            'text_trans'  : [],
            'text_rest'   : [],
            'rest'        : [],}
        for pname, para in self.model.named_parameters():
            if is_part_of_unet_image(pname):
                if is_part_of_trans(pname):
                    parameter_group['image_trans'].append(para)
                else:
                    parameter_group['image_rest'].append(para)
            elif is_part_of_unet_text(pname):
                if is_part_of_trans(pname):
                    parameter_group['text_trans'].append(para)
                else:
                    parameter_group['text_rest'].append(para)
            else:
                parameter_group['rest'].append(para)

        return parameter_group

    def to(self, device):
        self.device = device
        super().to(device)

    @torch.no_grad()
    def on_train_batch_start(self, x):
        # only for very first batch
        if self.scale_by_std:
            assert self.scale_factor == 1., \
                'rather not use custom rescaling and std-rescaling simultaneously'
            # set rescale weight to 1./std of encodings
            encoder_posterior = self.encode_first_stage(x)
            z = self.get_first_stage_encoding(encoder_posterior).detach()
            del self.scale_factor
            self.register_buffer('scale_factor', 1. / z.flatten().std())
            highlight_print("setting self.scale_factor to {}".format(self.scale_factor))

    @torch.no_grad()
    def autokl_encode(self, image):
        encoder_posterior = self.autokl.encode(image)
        z = encoder_posterior.sample()
        return self.scale_factor * z

    @torch.no_grad()
    def autokl_decode(self, z):
        z = 1. / self.scale_factor * z
        return self.autokl.decode(z)

    def mask_tokens(inputs, tokenizer, args):
        labels = inputs.clone()
        # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
        
        masked_indices = torch.bernoulli(torch.full(labels.shape, args.mlm_probability)).to(torch.uint8)
        labels[masked_indices==1] = -1  # We only compute loss on masked tokens

        # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
        indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).to(torch.uint8) & masked_indices
        inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

        # 10% of the time, we replace masked input tokens with random word
        indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).to(torch.uint8) & masked_indices & ~indices_replaced
        indices_random = indices_random
        random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
        inputs[indices_random] = random_words[indices_random]

        # The rest of the time (10% of the time) we keep the masked input tokens unchanged
        return inputs, labels

    @torch.no_grad()
    def optimus_encode(self, text):
        tokenizer = self.optimus.tokenizer_encoder
        token = [tokenizer.tokenize(sentence.lower()) for sentence in text]
        token_id = []
        for tokeni in token:
            token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni]
            token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence)
            token_id.append(torch.LongTensor(token_sentence))
        token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)
        token_id = token_id.to(self.device)
        z = self.optimus.encoder(token_id, attention_mask=(token_id > 0).float())[1]
        z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1)
        # z_sampled = self.optimus.reparameterize(z_mu, z_logvar, 1)
        return z_mu.squeeze(1)

    @torch.no_grad()
    def optimus_decode(self, z, temperature=1.0):
        bos_token = self.optimus.tokenizer_decoder.encode('<BOS>')
        eos_token = self.optimus.tokenizer_decoder.encode('<EOS>')
        context_tokens = torch.LongTensor(bos_token).to(z.device)

        from .optimus import sample_single_sequence_conditional
        sentenses = []
        for zi in z:
            out = sample_single_sequence_conditional(
                model=self.optimus.decoder,
                context=context_tokens,
                past=zi, temperature=temperature, 
                top_k=0, top_p=1.0,
                max_length=30,
                eos_token = eos_token[0],)
            text = self.optimus.tokenizer_decoder.decode(out.tolist(), clean_up_tokenization_spaces=True)
            text = text.split()[1:-1]
            text = ' '.join(text)
            sentenses.append(text)
        return sentenses

    @torch.no_grad()
    def clip_encode_text(self, text, encode_type='encode_text'):
        swap_type = self.clip.encode_type
        self.clip.encode_type = encode_type
        embedding = self.clip.encode(text)
        self.clip.encode_type = swap_type
        return embedding

    @torch.no_grad()
    def clip_encode_vision(self, vision, encode_type='encode_vision'):
        swap_type = self.clip.encode_type
        self.clip.encode_type = encode_type
        if isinstance(vision, torch.Tensor):
            vision = ((vision+1)/2).to('cpu').numpy()
            vision = np.transpose(vision, (0, 2, 3, 1))
            vision = [vi for vi in vision]
        embedding = self.clip.encode(vision)
        self.clip.encode_type = swap_type
        return embedding

    def forward(self, x, c, noise=None, xtype='image', ctype='prompt'):
        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
        return self.p_losses(x, c, t, noise, xtype, ctype)

    def apply_model(self, x_noisy, t, cond, xtype='image', ctype='prompt'):
        return self.model.diffusion_model(x_noisy, t, cond, xtype, ctype)

    def get_image_loss(self, pred, target, mean=True):
        if self.loss_type == 'l1':
            loss = (target - pred).abs()
            if mean:
                loss = loss.mean()
        elif self.loss_type == 'l2':
            if mean:
                loss = torch.nn.functional.mse_loss(target, pred)
            else:
                loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
        else:
            raise NotImplementedError("unknown loss type '{loss_type}'")
        return loss

    def get_text_loss(self, pred, target):
        if self.loss_type == 'l1':
            loss = (target - pred).abs()
        elif self.loss_type == 'l2':
            loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
        return loss

    def p_losses(self, x_start, cond, t, noise=None, xtype='image', ctype='prompt'):
        noise = torch.randn_like(x_start) if noise is None else noise
        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        model_output = self.apply_model(x_noisy, t, cond, xtype, ctype)

        loss_dict = {}

        if self.parameterization == "x0":
            target = x_start
        elif self.parameterization == "eps":
            target = noise
        else:
            raise NotImplementedError()

        if xtype == 'image':
            loss_simple = self.get_image_loss(model_output, target, mean=False).mean([1, 2, 3])
        elif xtype == 'text':
            loss_simple = self.get_text_loss(model_output, target).mean([1])

        logvar_t = self.logvar[t].to(self.device)
        if logvar_t.sum().item() != 0:
            assert False, "Default SD training has logvar fixed at 0"
        if self.learn_logvar:
            assert False, "Default SD training don't learn logvar"
        if self.l_simple_weight != 1:
            assert False, "Default SD training always set l_simple_weight==1"

        loss = loss_simple.mean()
        loss_dict['loss_simple'] = loss_simple.mean().item()
        loss_dict['Loss'] = loss.item()
        return loss, loss_dict

    def apply_model_ex(self, x_noisy, t, c_in, c_ex, xtype='image', c_in_type='image', c_ex_type='text', mixed_ratio=0.5):
        return self.model.diffusion_model.forward_ex(x_noisy, t, c_in, c_ex, xtype, c_in_type, c_ex_type, mixed_ratio)

    def apply_model_dc(self, x_noisy, t, first_c, second_c, xtype='image', first_ctype='vision', second_ctype='prompt', mixed_ratio=0.5):
        return self.model.diffusion_model.forward_dc(x_noisy, t, first_c, second_c, xtype, first_ctype, second_ctype, mixed_ratio)