Spaces:
Build error
Build error
File size: 45,609 Bytes
67a8158 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
import copy
from functools import partial
from contextlib import contextmanager
from lib.model_zoo.common.get_model import get_model, register
from lib.log_service import print_log
version = '0'
symbol = 'sd'
from .diffusion_utils import \
count_params, extract_into_tensor, make_beta_schedule
from .distributions import normal_kl, DiagonalGaussianDistribution
from .ema import LitEma
def highlight_print(info):
print_log('')
print_log(''.join(['#']*(len(info)+4)))
print_log('# '+info+' #')
print_log(''.join(['#']*(len(info)+4)))
print_log('')
class DDPM(nn.Module):
def __init__(self,
unet_config,
timesteps=1000,
use_ema=True,
beta_schedule="linear",
beta_linear_start=1e-4,
beta_linear_end=2e-2,
loss_type="l2",
clip_denoised=True,
cosine_s=8e-3,
given_betas=None,
l_simple_weight=1.,
original_elbo_weight=0.,
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
parameterization="eps",
use_positional_encodings=False,
learn_logvar=False,
logvar_init=0, ):
super().__init__()
assert parameterization in ["eps", "x0"], \
'currently only supporting "eps" and "x0"'
self.parameterization = parameterization
highlight_print("Running in {} mode".format(self.parameterization))
self.cond_stage_model = None
self.clip_denoised = clip_denoised
self.use_positional_encodings = use_positional_encodings
from collections import OrderedDict
self.model = nn.Sequential(OrderedDict([('diffusion_model', get_model()(unet_config))]))
# TODO: Remove this ugly trick to match SD with deprecated version, after no bug with the module.
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.model)
print_log(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
self.v_posterior = v_posterior
self.l_simple_weight = l_simple_weight
self.original_elbo_weight = original_elbo_weight
self.register_schedule(
given_betas=given_betas,
beta_schedule=beta_schedule,
timesteps=timesteps,
linear_start=beta_linear_start,
linear_end=beta_linear_end,
cosine_s=cosine_s)
self.loss_type = loss_type
self.learn_logvar = learn_logvar
self.logvar = torch.full(
fill_value=logvar_init, size=(self.num_timesteps,))
if self.learn_logvar:
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
def register_schedule(self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3):
if given_betas is not None:
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, \
'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
1. - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
if self.parameterization == "eps":
lvlb_weights = self.betas ** 2 / (
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
elif self.parameterization == "x0":
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
else:
raise NotImplementedError("mu not supported")
# TODO how to choose this term
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print_log(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print_log(f"{context}: Restored training weights")
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
value1 = extract_into_tensor(
self.sqrt_recip_alphas_cumprod, t, x_t.shape)
value2 = extract_into_tensor(
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
return value1*x_t -value2*noise
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, clip_denoised: bool):
model_out = self.model(x, t)
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape, return_intermediates=False):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
intermediates = [img]
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
clip_denoised=self.clip_denoised)
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
intermediates.append(img)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, batch_size=16, return_intermediates=False):
image_size = self.image_size
channels = self.channels
return self.p_sample_loop((batch_size, channels, image_size, image_size),
return_intermediates=return_intermediates)
def q_sample(self, x_start, t, noise=None):
noise = torch.randn_like(x_start) if noise is None else noise
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def get_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def p_losses(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_out = self.model(x_noisy, t)
loss_dict = {}
if self.parameterization == "eps":
target = noise
elif self.parameterization == "x0":
target = x_start
else:
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
log_prefix = 'train' if self.training else 'val'
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
loss_simple = loss.mean() * self.l_simple_weight
loss_vlb = (self.lvlb_weights[t] * loss).mean()
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
loss = loss_simple + self.original_elbo_weight * loss_vlb
loss_dict.update({f'{log_prefix}/loss': loss})
return loss, loss_dict
def forward(self, x, *args, **kwargs):
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
return self.p_losses(x, t, *args, **kwargs)
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.model)
@register('sd_t2i', version)
class SD_T2I(DDPM):
def __init__(self,
first_stage_config,
cond_stage_config,
num_timesteps_cond=None,
cond_stage_trainable=False,
scale_factor=1.0,
scale_by_std=False,
*args,
**kwargs):
self.num_timesteps_cond = num_timesteps_cond \
if num_timesteps_cond is not None else 1
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs['timesteps']
super().__init__(*args, **kwargs)
self.first_stage_model = get_model()(first_stage_config)
self.cond_stage_model = get_model()(cond_stage_config)
self.concat_mode = 'crossattn'
self.cond_stage_trainable = cond_stage_trainable
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.device = 'cpu'
def to(self, device):
self.device = device
super().to(device)
@torch.no_grad()
def on_train_batch_start(self, x):
# only for very first batch
if self.scale_by_std:
assert self.scale_factor == 1., \
'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
del self.scale_factor
self.register_buffer('scale_factor', 1. / z.flatten().std())
highlight_print("setting self.scale_factor to {}".format(self.scale_factor))
def register_schedule(self,
given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def make_cond_schedule(self, ):
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
self.cond_ids[:self.num_timesteps_cond] = ids
@torch.no_grad()
def encode_image(self, im):
encoder_posterior = self.first_stage_model.encode(im)
z = self.get_first_stage_encoding(encoder_posterior).detach()
return z
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
return self.scale_factor * z
@torch.no_grad()
def decode_image(self, z, predict_cids=False, force_not_quantize=False):
z = 1. / self.scale_factor * z
return self.first_stage_model.decode(z)
@torch.no_grad()
def encode_text(self, text):
return self.get_learned_conditioning(text)
def get_learned_conditioning(self, c):
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
return c
def forward(self, x, c, noise=None):
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
if self.cond_stage_trainable:
c = self.get_learned_conditioning(c)
return self.p_losses(x, c, t, noise)
def apply_model(self, x_noisy, t, cond):
return self.model.diffusion_model(x_noisy, t, cond)
def p_losses(self, x_start, cond, t, noise=None):
noise = torch.randn_like(x_start) if noise is None else noise
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond)
loss_dict = {}
prefix = 'train' if self.training else 'val'
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
loss_dict['loss_simple'] = loss_simple.mean()
logvar_t = self.logvar[t].to(self.device)
loss = loss_simple / torch.exp(logvar_t) + logvar_t
if self.learn_logvar:
loss_dict['loss_gamma'] = loss.mean()
loss_dict['logvar' ] = self.logvar.data.mean()
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict['loss_vlb'] = loss_vlb
loss += (self.original_elbo_weight * loss_vlb)
loss_dict.update({'Loss': loss})
return loss, loss_dict
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
def _prior_bpd(self, x_start):
"""
Get the prior KL term for the variational lower-bound, measured in
bits-per-dim.
This term can't be optimized, as it only depends on the encoder.
:param x_start: the [N x C x ...] tensor of inputs.
:return: a batch of [N] KL values (in bits), one per batch element.
"""
batch_size = x_start.shape[0]
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
return mean_flat(kl_prior) / np.log(2.0)
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
return_x0=False, score_corrector=None, corrector_kwargs=None):
t_in = t
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
if score_corrector is not None:
assert self.parameterization == "eps"
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
if return_codebook_ids:
model_out, logits = model_out
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
x_recon.clamp_(-1., 1.)
if quantize_denoised:
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
if return_codebook_ids:
return model_mean, posterior_variance, posterior_log_variance, logits
elif return_x0:
return model_mean, posterior_variance, posterior_log_variance, x_recon
else:
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
b, *_, device = *x.shape, x.device
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
return_codebook_ids=return_codebook_ids,
quantize_denoised=quantize_denoised,
return_x0=return_x0,
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
if return_codebook_ids:
raise DeprecationWarning("Support dropped.")
model_mean, _, model_log_variance, logits = outputs
elif return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
if return_codebook_ids:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
if return_x0:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
else:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
log_every_t=None):
if not log_every_t:
log_every_t = self.log_every_t
timesteps = self.num_timesteps
if batch_size is not None:
b = batch_size if batch_size is not None else shape[0]
shape = [batch_size] + list(shape)
else:
b = batch_size = shape[0]
if x_T is None:
img = torch.randn(shape, device=self.device)
else:
img = x_T
intermediates = []
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
total=timesteps) if verbose else reversed(
range(0, timesteps))
if type(temperature) == float:
temperature = [temperature] * timesteps
for i in iterator:
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img, x0_partial = self.p_sample(img, cond, ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised, return_x0=True,
temperature=temperature[i], noise_dropout=noise_dropout,
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
if mask is not None:
assert x0 is not None
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
if callback: callback(i)
if img_callback: img_callback(img, i)
return img, intermediates
@torch.no_grad()
def p_sample_loop(self, cond, shape, return_intermediates=False,
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
mask=None, x0=None, img_callback=None, start_T=None,
log_every_t=None):
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
range(0, timesteps))
if mask is not None:
assert x0 is not None
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
for i in iterator:
ts = torch.full((b,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img = self.p_sample(img, cond, ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised)
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback: callback(i)
if img_callback: img_callback(img, i)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
verbose=True, timesteps=None, quantize_denoised=False,
mask=None, x0=None, shape=None,**kwargs):
if shape is None:
shape = (batch_size, self.channels, self.image_size, self.image_size)
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
return self.p_sample_loop(cond,
shape,
return_intermediates=return_intermediates, x_T=x_T,
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
mask=mask, x0=x0)
@register('sd_t2i_split_trans_pg', version)
class SD_T2I_SplitTransPG(SD_T2I):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.parameter_group = {
# 'first_stage_model' : self.first_stage_model,
# 'cond_stage_model' : self.cond_stage_model,
'transformers' : [v for n, v in self.model.named_parameters() if n.find('transformer_blocks')!=-1],
'other' :[v for n, v in self.model.named_parameters() if n.find('transformer_blocks')==-1],
}
@register('sd_dual_crossattn', version)
class SD_Dual_CrossAttn(SD_T2I):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def is_part_of_trans(name):
if name.find('.1.norm')!=-1:
return True
if name.find('.1.proj_in')!=-1:
return True
if name.find('.1.transformer_blocks')!=-1:
return True
if name.find('.1.proj_out')!=-1:
return True
return False
self.parameter_group = {
'transformers' : [v for n, v in self.model.named_parameters() if is_part_of_trans(n)],
'other' :[v for n, v in self.model.named_parameters() if not is_part_of_trans(n)],
}
def apply_model(self, x_noisy, t, cond, cond_type):
if cond_type in ['prompt', 'text']:
which_attn = 0
elif cond_type in ['vision', 'visual', 'image']:
which_attn = 1
elif isinstance(cond_type, float):
assert 0 < cond_type < 1, \
'A special cond_type that will doing a random mix between two input condition, '\
'rand() < cond_type is text, else visual'
which_attn = cond_type
else:
assert False
return self.model.diffusion_model(x_noisy, t, cond, which_attn=which_attn)
def p_losses(self, x_start, cond, t, noise=None, cond_type=None):
noise = torch.randn_like(x_start) if noise is None else noise
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond, cond_type=cond_type)
loss_dict = {}
prefix = 'train' if self.training else 'val'
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
loss_dict['loss_simple'] = loss_simple.mean()
logvar_t = self.logvar[t].to(self.device)
loss = loss_simple / torch.exp(logvar_t) + logvar_t
if self.learn_logvar:
loss_dict['loss_gamma'] = loss.mean()
loss_dict['logvar' ] = self.logvar.data.mean()
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict['loss_vlb'] = loss_vlb
loss += (self.original_elbo_weight * loss_vlb)
loss_dict.update({'Loss': loss})
return loss, loss_dict
@torch.no_grad()
def clip_encode_text(self, text):
clip_encode_type = self.cond_stage_model.encode_type
self.cond_stage_model.encode_type = 'encode_text'
embedding = self.get_learned_conditioning(text)
self.cond_stage_model.encode_type = clip_encode_type
return embedding
@torch.no_grad()
def clip_encode_vision(self, vision, encode_type='encode_vision'):
clip_encode_type = self.cond_stage_model.encode_type
self.cond_stage_model.encode_type = encode_type
if isinstance(vision, torch.Tensor):
vision = ((vision+1)/2).to('cpu').numpy()
vision = np.transpose(vision, (0, 2, 3, 1))
vision = [vi for vi in vision]
embedding = self.get_learned_conditioning(vision)
self.cond_stage_model.encode_type = clip_encode_type
return embedding
def get_learned_conditioning(self, c):
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
return c
def forward(self, x, c, noise=None, cond_type=None):
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
if self.cond_stage_trainable:
c = self.get_learned_conditioning(c)
return self.p_losses(x, c, t, noise, cond_type=cond_type)
@register('sd_variation', version)
class SD_Variation(SD_T2I):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def is_part_of_trans(name):
if name.find('.1.norm')!=-1:
return True
if name.find('.1.proj_in')!=-1:
return True
if name.find('.1.transformer_blocks')!=-1:
return True
if name.find('.1.proj_out')!=-1:
return True
return False
self.parameter_group = {
'transformers' : [v for n, v in self.model.named_parameters() if is_part_of_trans(n)],
'other' :[v for n, v in self.model.named_parameters() if not is_part_of_trans(n)],
}
self.encode_image = None
self.encode_text = None
self._predict_eps_from_xstart = None
self._prior_bpd = None
self.p_mean_variance = None
self.p_sample = None
self.progressive_denoising = None
self.p_sample_loop = None
self.sample = None
@torch.no_grad()
def encode_input(self, im):
encoder_posterior = self.first_stage_model.encode(im)
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError("Encoder_posterior of type '{}' not yet implemented".format(type(encoder_posterior)))
return z * self.scale_factor
@torch.no_grad()
def decode_latent(self, z):
z = 1. / self.scale_factor * z
return self.first_stage_model.decode(z)
@torch.no_grad()
def clip_encode_vision(self, vision):
if isinstance(vision, list):
if not isinstance(vision[0], torch.Tensor):
import torchvision.transforms as tvtrans
vision = [tvtrans.ToTensor()(i) for i in vision]
vh = torch.stack(vision)
elif isinstance(vision, torch.Tensor):
vh = vision.unsqueeze(0) if (vision.shape==3) else vision
assert len(vh.shape) == 4
else:
raise ValueError
vh = vh.to(self.device)
return self.encode_conditioning(vh)
# legacy
def get_learned_conditioning(self, c):
return self.encode_conditioning(c)
def encode_conditioning(self, c):
return self.cond_stage_model.encode(c)
def forward(self, x, c, noise=None):
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
if self.cond_stage_trainable:
c = self.encode_conditioning(c)
return self.p_losses(x, c, t, noise)
@register('sd_all_in_one', version)
class SD_ALL_IN_ONE(DDPM):
def __init__(self,
autokl_cfg,
optimus_cfg,
clip_cfg,
scale_factor=1.0,
scale_by_std=False,
*args,
**kwargs):
self.scale_by_std = scale_by_std
super().__init__(*args, **kwargs)
self.autokl = get_model()(autokl_cfg)
self.optimus = get_model()(optimus_cfg)
self.clip = get_model()(clip_cfg)
self.concat_mode = 'crossattn'
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.device = 'cpu'
self.parameter_group = self.create_parameter_group()
debug = 1
def create_parameter_group(self):
def is_part_of_unet_image(name):
if name.find('.unet_image.')!=-1:
return True
return False
def is_part_of_unet_text(name):
if name.find('.unet_text.')!=-1:
return True
return False
def is_part_of_trans(name):
if name.find('.1.norm')!=-1:
return True
if name.find('.1.proj_in')!=-1:
return True
if name.find('.1.transformer_blocks')!=-1:
return True
if name.find('.1.proj_out')!=-1:
return True
return False
parameter_group = {
'image_trans' : [],
'image_rest' : [],
'text_trans' : [],
'text_rest' : [],
'rest' : [],}
for pname, para in self.model.named_parameters():
if is_part_of_unet_image(pname):
if is_part_of_trans(pname):
parameter_group['image_trans'].append(para)
else:
parameter_group['image_rest'].append(para)
elif is_part_of_unet_text(pname):
if is_part_of_trans(pname):
parameter_group['text_trans'].append(para)
else:
parameter_group['text_rest'].append(para)
else:
parameter_group['rest'].append(para)
return parameter_group
def to(self, device):
self.device = device
super().to(device)
@torch.no_grad()
def on_train_batch_start(self, x):
# only for very first batch
if self.scale_by_std:
assert self.scale_factor == 1., \
'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
del self.scale_factor
self.register_buffer('scale_factor', 1. / z.flatten().std())
highlight_print("setting self.scale_factor to {}".format(self.scale_factor))
@torch.no_grad()
def autokl_encode(self, image):
encoder_posterior = self.autokl.encode(image)
z = encoder_posterior.sample()
return self.scale_factor * z
@torch.no_grad()
def autokl_decode(self, z):
z = 1. / self.scale_factor * z
return self.autokl.decode(z)
def mask_tokens(inputs, tokenizer, args):
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
masked_indices = torch.bernoulli(torch.full(labels.shape, args.mlm_probability)).to(torch.uint8)
labels[masked_indices==1] = -1 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).to(torch.uint8) & masked_indices
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).to(torch.uint8) & masked_indices & ~indices_replaced
indices_random = indices_random
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
@torch.no_grad()
def optimus_encode(self, text):
tokenizer = self.optimus.tokenizer_encoder
token = [tokenizer.tokenize(sentence.lower()) for sentence in text]
token_id = []
for tokeni in token:
token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni]
token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence)
token_id.append(torch.LongTensor(token_sentence))
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)
token_id = token_id.to(self.device)
z = self.optimus.encoder(token_id, attention_mask=(token_id > 0).float())[1]
z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1)
# z_sampled = self.optimus.reparameterize(z_mu, z_logvar, 1)
return z_mu.squeeze(1)
@torch.no_grad()
def optimus_decode(self, z, temperature=1.0):
bos_token = self.optimus.tokenizer_decoder.encode('<BOS>')
eos_token = self.optimus.tokenizer_decoder.encode('<EOS>')
context_tokens = torch.LongTensor(bos_token).to(z.device)
from .optimus import sample_single_sequence_conditional
sentenses = []
for zi in z:
out = sample_single_sequence_conditional(
model=self.optimus.decoder,
context=context_tokens,
past=zi, temperature=temperature,
top_k=0, top_p=1.0,
max_length=30,
eos_token = eos_token[0],)
text = self.optimus.tokenizer_decoder.decode(out.tolist(), clean_up_tokenization_spaces=True)
text = text.split()[1:-1]
text = ' '.join(text)
sentenses.append(text)
return sentenses
@torch.no_grad()
def clip_encode_text(self, text, encode_type='encode_text'):
swap_type = self.clip.encode_type
self.clip.encode_type = encode_type
embedding = self.clip.encode(text)
self.clip.encode_type = swap_type
return embedding
@torch.no_grad()
def clip_encode_vision(self, vision, encode_type='encode_vision'):
swap_type = self.clip.encode_type
self.clip.encode_type = encode_type
if isinstance(vision, torch.Tensor):
vision = ((vision+1)/2).to('cpu').numpy()
vision = np.transpose(vision, (0, 2, 3, 1))
vision = [vi for vi in vision]
embedding = self.clip.encode(vision)
self.clip.encode_type = swap_type
return embedding
def forward(self, x, c, noise=None, xtype='image', ctype='prompt'):
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
return self.p_losses(x, c, t, noise, xtype, ctype)
def apply_model(self, x_noisy, t, cond, xtype='image', ctype='prompt'):
return self.model.diffusion_model(x_noisy, t, cond, xtype, ctype)
def get_image_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def get_text_loss(self, pred, target):
if self.loss_type == 'l1':
loss = (target - pred).abs()
elif self.loss_type == 'l2':
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
return loss
def p_losses(self, x_start, cond, t, noise=None, xtype='image', ctype='prompt'):
noise = torch.randn_like(x_start) if noise is None else noise
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond, xtype, ctype)
loss_dict = {}
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
if xtype == 'image':
loss_simple = self.get_image_loss(model_output, target, mean=False).mean([1, 2, 3])
elif xtype == 'text':
loss_simple = self.get_text_loss(model_output, target).mean([1])
logvar_t = self.logvar[t].to(self.device)
if logvar_t.sum().item() != 0:
assert False, "Default SD training has logvar fixed at 0"
if self.learn_logvar:
assert False, "Default SD training don't learn logvar"
if self.l_simple_weight != 1:
assert False, "Default SD training always set l_simple_weight==1"
loss = loss_simple.mean()
loss_dict['loss_simple'] = loss_simple.mean().item()
loss_dict['Loss'] = loss.item()
return loss, loss_dict
def apply_model_ex(self, x_noisy, t, c_in, c_ex, xtype='image', c_in_type='image', c_ex_type='text', mixed_ratio=0.5):
return self.model.diffusion_model.forward_ex(x_noisy, t, c_in, c_ex, xtype, c_in_type, c_ex_type, mixed_ratio)
def apply_model_dc(self, x_noisy, t, first_c, second_c, xtype='image', first_ctype='vision', second_ctype='prompt', mixed_ratio=0.5):
return self.model.diffusion_model.forward_dc(x_noisy, t, first_c, second_c, xtype, first_ctype, second_ctype, mixed_ratio) |