Spaces:
Build error
Build error
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch OpenAI GPT-2 model.""" | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import pdb | |
import collections | |
import json | |
import logging | |
import math | |
import os | |
import sys | |
from io import open | |
import torch | |
import torch.nn as nn | |
from torch.nn import CrossEntropyLoss | |
from torch.nn.parameter import Parameter | |
from .modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary | |
from .configuration_gpt2 import GPT2Config | |
from .file_utils import add_start_docstrings | |
logger = logging.getLogger(__name__) | |
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin", | |
"gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin", | |
"gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin"} | |
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): | |
""" Load tf checkpoints in a pytorch model | |
""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions.") | |
raise | |
tf_path = os.path.abspath(gpt2_checkpoint_path) | |
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info("Loading TF weight {} with shape {}".format(name, shape)) | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array.squeeze()) | |
for name, array in zip(names, arrays): | |
name = name[6:] # skip "model/" | |
name = name.split('/') | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r'[A-Za-z]+\d+', m_name): | |
l = re.split(r'(\d+)', m_name) | |
else: | |
l = [m_name] | |
if l[0] == 'w' or l[0] == 'g': | |
pointer = getattr(pointer, 'weight') | |
elif l[0] == 'b': | |
pointer = getattr(pointer, 'bias') | |
elif l[0] == 'wpe' or l[0] == 'wte': | |
pointer = getattr(pointer, l[0]) | |
pointer = getattr(pointer, 'weight') | |
else: | |
pointer = getattr(pointer, l[0]) | |
if len(l) >= 2: | |
num = int(l[1]) | |
pointer = pointer[num] | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info("Initialize PyTorch weight {}".format(name)) | |
pointer.data = torch.from_numpy(array) | |
return model | |
def gelu(x): | |
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
class Attention(nn.Module): | |
def __init__(self, nx, n_ctx, config, scale=False): | |
super(Attention, self).__init__() | |
self.output_attentions = config.output_attentions | |
n_state = nx # in Attention: n_state=768 (nx=n_embd) | |
# [switch nx => n_state from Block to Attention to keep identical to TF implem] | |
assert n_state % config.n_head == 0 | |
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) | |
self.n_head = config.n_head | |
self.split_size = n_state | |
self.scale = scale | |
self.c_attn = Conv1D(n_state * 3, nx) | |
self.c_proj = Conv1D(n_state, nx) | |
self.attn_dropout = nn.Dropout(config.attn_pdrop) | |
self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
mask = torch.ones(self.n_head, self.split_size // self.n_head) | |
heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads | |
for head in heads: | |
# Compute how many pruned heads are before the head and move the index accordingly | |
head = head - sum(1 if h < head else 0 for h in self.pruned_heads) | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index = torch.arange(len(mask))[mask].long() | |
index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)]) | |
# Prune conv1d layers | |
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) | |
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) | |
# Update hyper params | |
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) | |
self.n_head = self.n_head - len(heads) | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def _attn(self, q, k, v, attention_mask=None, head_mask=None): | |
w = torch.matmul(q, k) | |
if self.scale: | |
w = w / math.sqrt(v.size(-1)) | |
nd, ns = w.size(-2), w.size(-1) | |
b = self.bias[:, :, ns-nd:ns, :ns] | |
w = w * b - 1e4 * (1 - b) | |
if attention_mask is not None: | |
# Apply the attention mask | |
w = w + attention_mask | |
w = nn.Softmax(dim=-1)(w) | |
w = self.attn_dropout(w) | |
# Mask heads if we want to | |
if head_mask is not None: | |
w = w * head_mask | |
outputs = [torch.matmul(w, v)] | |
if self.output_attentions: | |
outputs.append(w) | |
return outputs | |
def merge_heads(self, x): | |
x = x.permute(0, 2, 1, 3).contiguous() | |
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) | |
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states | |
def split_heads(self, x, k=False): | |
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) | |
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states | |
if k: | |
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) | |
else: | |
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) | |
def forward(self, x, layer_past=None, attention_mask=None, head_mask=None): | |
x = self.c_attn(x) | |
query, key, value = x.split(self.split_size, dim=2) | |
query = self.split_heads(query) | |
key = self.split_heads(key, k=True) | |
value = self.split_heads(value) | |
if layer_past is not None: | |
past_key, past_value = layer_past[0], layer_past[1] # transpose back cf below | |
past_key = self.split_heads(past_key, k=True) | |
past_value = self.split_heads(past_value) | |
# pdb.set_trace() | |
key = torch.cat((past_key, key), dim=-1) | |
value = torch.cat((past_value, value), dim=-2) | |
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking | |
attn_outputs = self._attn(query, key, value, attention_mask, head_mask) | |
a = attn_outputs[0] | |
a = self.merge_heads(a) | |
a = self.c_proj(a) | |
a = self.resid_dropout(a) | |
outputs = [a, present] + attn_outputs[1:] | |
return outputs # a, present, (attentions) | |
class MLP(nn.Module): | |
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) | |
super(MLP, self).__init__() | |
nx = config.n_embd | |
self.c_fc = Conv1D(n_state, nx) | |
self.c_proj = Conv1D(nx, n_state) | |
self.act = gelu | |
self.dropout = nn.Dropout(config.resid_pdrop) | |
def forward(self, x): | |
h = self.act(self.c_fc(x)) | |
h2 = self.c_proj(h) | |
return self.dropout(h2) | |
class Block(nn.Module): | |
def __init__(self, n_ctx, config, scale=False): | |
super(Block, self).__init__() | |
nx = config.n_embd | |
self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) | |
self.attn = Attention(nx, n_ctx, config, scale) | |
self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) | |
self.mlp = MLP(4 * nx, config) | |
def forward(self, x, layer_past=None, attention_mask=None, head_mask=None): | |
output_attn = self.attn(self.ln_1(x), | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask) | |
a = output_attn[0] # output_attn: a, present, (attentions) | |
x = x + a | |
m = self.mlp(self.ln_2(x)) | |
x = x + m | |
outputs = [x] + output_attn[1:] | |
return outputs # x, present, (attentions) | |
class GPT2PreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
config_class = GPT2Config | |
pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP | |
load_tf_weights = load_tf_weights_in_gpt2 | |
base_model_prefix = "transformer" | |
def __init__(self, *inputs, **kwargs): | |
super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs) | |
def _init_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
GPT2_START_DOCSTRING = r""" OpenAI GPT-2 model was proposed in | |
`Language Models are Unsupervised Multitask Learners`_ | |
by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. | |
It's a causal (unidirectional) transformer pre-trained using language modeling on a very large | |
corpus of ~40 GB of text data. | |
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and | |
refer to the PyTorch documentation for all matter related to general usage and behavior. | |
.. _`Language Models are Unsupervised Multitask Learners`: | |
https://openai.com/blog/better-language-models/ | |
.. _`torch.nn.Module`: | |
https://pytorch.org/docs/stable/nn.html#module | |
Parameters: | |
config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
GPT2_INPUTS_DOCSTRING = r""" Inputs: | |
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of input sequence tokens in the vocabulary. | |
GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on | |
the right rather than the left. | |
Indices can be obtained using :class:`pytorch_transformers.GPT2Tokenizer`. | |
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and | |
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. | |
**past**: | |
list of ``torch.FloatTensor`` (one for each layer): | |
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model | |
(see `past` output below). Can be used to speed up sequential decoding. | |
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
A parallel sequence of tokens (can be used to indicate various portions of the inputs). | |
The embeddings from these tokens will be summed with the respective token embeddings. | |
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices). | |
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of positions of each input sequence tokens in the position embeddings. | |
Selected in the range ``[0, config.max_position_embeddings - 1]``. | |
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. | |
""" | |
class GPT2Model(GPT2PreTrainedModel): | |
r""" | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` | |
Sequence of hidden-states at the last layer of the model. | |
**past**: | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
that contains pre-computed hidden-states (key and values in the attention blocks). | |
Can be used (see `past` input) to speed up sequential decoding. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2Model.from_pretrained('gpt2') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
def __init__(self, config): | |
super(GPT2Model, self).__init__(config) | |
self.output_hidden_states = config.output_hidden_states | |
self.output_attentions = config.output_attentions | |
self.wte = nn.Embedding(config.vocab_size, config.n_embd) | |
self.wpe = nn.Embedding(config.n_positions, config.n_embd) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]) | |
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
try: | |
self.latent_size = config.latent_size | |
except: | |
self.latent_size = 32 # default size is 32 | |
self.linear = nn.Linear(self.latent_size, config.hidden_size * config.n_layer, bias=False) # different latent vector for each layer | |
self.linear_emb = nn.Linear(self.latent_size, config.hidden_size, bias=False) # share the same latent vector as the embeddings | |
self.config = config | |
self.init_weights() | |
def _resize_token_embeddings(self, new_num_tokens): | |
self.wte = self._get_resized_embeddings(self.wte, new_num_tokens) | |
return self.wte | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.h[layer].attn.prune_heads(heads) | |
def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, latent_as_gpt_emb=False, latent_as_gpt_memory=True): | |
if past is None: | |
past_length = 0 | |
past = [None] * len(self.h) | |
else: | |
if latent_as_gpt_emb: | |
past_emb = self.linear_emb(past) # used as embeddings to add on other three embeddings | |
if latent_as_gpt_memory: | |
past = self.linear(past) | |
share_latent = False | |
if share_latent: | |
# the same latent vector shared by all layers | |
past = [past.unsqueeze(-2), past.unsqueeze(-2)] # query, key | |
past = [past] * len(self.h) | |
past_length = past[0][0].size(-2) | |
else: | |
# different latent vectors for each layer | |
past_split = torch.split(past.unsqueeze(1), self.config.hidden_size, dim=2) | |
past = list(zip(past_split,past_split)) | |
# past = past.view(batch_size,len(self.h),-1) | |
# past = [[past[:,i,:].unsqueeze(-2), past[:,i,:].unsqueeze(-2) ] for i in range(len(self.h))] | |
past_length = 1 # past[0][0].size(-2) | |
else: | |
past_length = 0 | |
past = [None] * len(self.h) | |
if position_ids is None: | |
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
# Attention mask. | |
if attention_mask is not None: | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
attention_mask = (1.0 - attention_mask) * -10000.0 | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# head_mask has shape n_layer x batch x n_heads x N x N | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.n_layer | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_ids.size(-1)) | |
position_ids = position_ids.view(-1, position_ids.size(-1)) | |
inputs_embeds = self.wte(input_ids) | |
position_embeds = self.wpe(position_ids) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) | |
token_type_embeds = self.wte(token_type_ids) | |
else: | |
token_type_embeds = 0 | |
hidden_states = inputs_embeds + position_embeds + token_type_embeds | |
if latent_as_gpt_emb: | |
# pdb.set_trace() | |
hidden_states = hidden_states + past_emb.unsqueeze(1) | |
hidden_states = self.drop(hidden_states) | |
output_shape = input_shape + (hidden_states.size(-1),) | |
presents = () | |
all_attentions = [] | |
all_hidden_states = () | |
for i, (block, layer_past) in enumerate(zip(self.h, past)): | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) | |
outputs = block(hidden_states, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask[i]) | |
hidden_states, present = outputs[:2] | |
presents = presents + (present,) | |
if self.output_attentions: | |
all_attentions.append(outputs[2]) | |
hidden_states = self.ln_f(hidden_states) | |
hidden_states = hidden_states.view(*output_shape) | |
# Add last hidden state | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
outputs = (hidden_states, presents) | |
if self.output_hidden_states: | |
outputs = outputs + (all_hidden_states,) | |
if self.output_attentions: | |
# let the number of heads free (-1) so we can extract attention even after head pruning | |
attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:] | |
all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions) | |
outputs = outputs + (all_attentions,) | |
return outputs # last hidden state, presents, (all hidden_states), (attentions) | |
class GPT2LMHeadModel(GPT2PreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for language modeling. | |
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` | |
Indices are selected in ``[-1, 0, ..., config.vocab_size]`` | |
All labels set to ``-1`` are ignored (masked), the loss is only | |
computed for labels in ``[0, ..., config.vocab_size]`` | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Language modeling loss. | |
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**past**: | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
that contains pre-computed hidden-states (key and values in the attention blocks). | |
Can be used (see `past` input) to speed up sequential decoding. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
import torch | |
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2LMHeadModel.from_pretrained('gpt2') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=input_ids) | |
loss, logits = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(GPT2LMHeadModel, self).__init__(config) | |
self.transformer = GPT2Model(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.init_weights() | |
self.tie_weights() | |
def tie_weights(self): | |
""" Make sure we are sharing the input and output embeddings. | |
Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
""" | |
self._tie_or_clone_weights(self.lm_head, | |
self.transformer.wte) | |
def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
labels=None, label_ignore=None): | |
transformer_outputs = self.transformer(input_ids, | |
past=past, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
outputs = (lm_logits,) + transformer_outputs[1:] | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(ignore_index=label_ignore, reduce=False) # 50258 is the padding id, otherwise -1 is used for masked LM. | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), | |
shift_labels.view(-1)) | |
loss = torch.sum(loss.view(-1, shift_labels.shape[-1]), -1) | |
outputs = (loss,) + outputs | |
return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions) | |
class GPT2ForLatentConnector(GPT2PreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for language modeling. | |
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` | |
Indices are selected in ``[-1, 0, ..., config.vocab_size]`` | |
All labels set to ``-1`` are ignored (masked), the loss is only | |
computed for labels in ``[0, ..., config.vocab_size]`` | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Language modeling loss. | |
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**past**: | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
that contains pre-computed hidden-states (key and values in the attention blocks). | |
Can be used (see `past` input) to speed up sequential decoding. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
import torch | |
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2LMHeadModel.from_pretrained('gpt2') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=input_ids) | |
loss, logits = outputs[:2] | |
""" | |
def __init__(self, config, latent_size=32, latent_as_gpt_emb=True, latent_as_gpt_memory=True): | |
super(GPT2ForLatentConnector, self).__init__(config) | |
self.transformer = GPT2Model(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.init_weights() | |
self.tie_weights() | |
self.latent_as_gpt_emb = latent_as_gpt_emb | |
self.latent_as_gpt_memory = latent_as_gpt_memory | |
def tie_weights(self): | |
""" Make sure we are sharing the input and output embeddings. | |
Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
""" | |
self._tie_or_clone_weights(self.lm_head, | |
self.transformer.wte) | |
def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
labels=None, label_ignore=None): | |
transformer_outputs = self.transformer(input_ids, | |
past=past, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
latent_as_gpt_emb=self.latent_as_gpt_emb, | |
latent_as_gpt_memory=self.latent_as_gpt_memory) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
outputs = (lm_logits,) + transformer_outputs[1:] | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(ignore_index=label_ignore, reduce=False) # 50258 is the padding id, otherwise -1 is used for masked LM. | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), | |
shift_labels.view(-1)) | |
loss = torch.sum(loss.view(-1, shift_labels.shape[-1]), -1) | |
outputs = (loss,) + outputs | |
return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions) | |
class GPT2DoubleHeadsModel(GPT2PreTrainedModel): | |
r""" | |
**mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``: | |
Index of the classification token in each input sequence. | |
Selected in the range ``[0, input_ids.size(-1) - 1[``. | |
**lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for language modeling. | |
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` | |
Indices are selected in ``[-1, 0, ..., config.vocab_size]`` | |
All labels set to ``-1`` are ignored (masked), the loss is only | |
computed for labels in ``[0, ..., config.vocab_size]`` | |
**mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``: | |
Labels for computing the multiple choice classification loss. | |
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension | |
of the input tensors. (see `input_ids` above) | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Language modeling loss. | |
**mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Multiple choice classification loss. | |
**lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` | |
Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax). | |
**past**: | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
that contains pre-computed hidden-states (key and values in the attention blocks). | |
Can be used (see `past` input) to speed up sequential decoding. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
import torch | |
from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2DoubleHeadsModel.from_pretrained('gpt2') | |
# Add a [CLS] to the vocabulary (we should train it also!) | |
tokenizer.add_special_tokens({'cls_token': '[CLS]'}) | |
model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size | |
print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary | |
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] | |
encoded_choices = [tokenizer.encode(s) for s in choices] | |
cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] | |
input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 | |
mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 | |
outputs = model(input_ids, mc_token_ids=mc_token_ids) | |
lm_prediction_scores, mc_prediction_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(GPT2DoubleHeadsModel, self).__init__(config) | |
self.transformer = GPT2Model(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.multiple_choice_head = SequenceSummary(config) | |
self.init_weights() | |
self.tie_weights() | |
def tie_weights(self): | |
""" Make sure we are sharing the input and output embeddings. | |
Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
""" | |
self._tie_or_clone_weights(self.lm_head, | |
self.transformer.wte) | |
def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
mc_token_ids=None, lm_labels=None, mc_labels=None): | |
transformer_outputs = self.transformer(input_ids, | |
past=past, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) | |
outputs = (lm_logits, mc_logits) + transformer_outputs[1:] | |
if mc_labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), | |
mc_labels.view(-1)) | |
outputs = (loss,) + outputs | |
if lm_labels is not None: | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = lm_labels[..., 1:].contiguous() | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), | |
shift_labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions) | |
############ | |
# XX Added # | |
############ | |
class GPT2Model_XX(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.output_hidden_states = config.output_hidden_states | |
self.output_attentions = config.output_attentions | |
self.wte = nn.Embedding(config.vocab_size, config.n_embd) | |
self.wpe = nn.Embedding(config.n_positions, config.n_embd) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]) | |
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
try: | |
self.latent_size = config.latent_size | |
except: | |
self.latent_size = 32 # default size is 32 | |
self.linear = nn.Linear(self.latent_size, config.hidden_size * config.n_layer, bias=False) # different latent vector for each layer | |
self.linear_emb = nn.Linear(self.latent_size, config.hidden_size, bias=False) # share the same latent vector as the embeddings | |
self.config = config | |
self.init_weights() | |
def init_weights(self): | |
""" Initialize and prunes weights if needed. """ | |
# Initialize weights | |
self.apply(self._init_weights) | |
# Prune heads if needed | |
if self.config.pruned_heads: | |
self.prune_heads(self.config.pruned_heads) | |
def _init_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _resize_token_embeddings(self, new_num_tokens): | |
self.wte = self._get_resized_embeddings(self.wte, new_num_tokens) | |
return self.wte | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.h[layer].attn.prune_heads(heads) | |
def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, latent_as_gpt_emb=False, latent_as_gpt_memory=True): | |
if past is None: | |
past_length = 0 | |
past = [None] * len(self.h) | |
else: | |
if latent_as_gpt_emb: | |
past_emb = self.linear_emb(past) # used as embeddings to add on other three embeddings | |
if latent_as_gpt_memory: | |
past = self.linear(past) | |
share_latent = False | |
if share_latent: | |
# the same latent vector shared by all layers | |
past = [past.unsqueeze(-2), past.unsqueeze(-2)] # query, key | |
past = [past] * len(self.h) | |
past_length = past[0][0].size(-2) | |
else: | |
# different latent vectors for each layer | |
past_split = torch.split(past.unsqueeze(1), self.config.hidden_size, dim=2) | |
past = list(zip(past_split,past_split)) | |
# past = past.view(batch_size,len(self.h),-1) | |
# past = [[past[:,i,:].unsqueeze(-2), past[:,i,:].unsqueeze(-2) ] for i in range(len(self.h))] | |
past_length = 1 # past[0][0].size(-2) | |
else: | |
past_length = 0 | |
past = [None] * len(self.h) | |
if position_ids is None: | |
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
# Attention mask. | |
if attention_mask is not None: | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
attention_mask = (1.0 - attention_mask) * -10000.0 | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# head_mask has shape n_layer x batch x n_heads x N x N | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.n_layer | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_ids.size(-1)) | |
position_ids = position_ids.view(-1, position_ids.size(-1)) | |
inputs_embeds = self.wte(input_ids) | |
position_embeds = self.wpe(position_ids) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) | |
token_type_embeds = self.wte(token_type_ids) | |
else: | |
token_type_embeds = 0 | |
hidden_states = inputs_embeds + position_embeds + token_type_embeds | |
if latent_as_gpt_emb: | |
# pdb.set_trace() | |
hidden_states = hidden_states + past_emb.unsqueeze(1) | |
hidden_states = self.drop(hidden_states) | |
output_shape = input_shape + (hidden_states.size(-1),) | |
presents = () | |
all_attentions = [] | |
all_hidden_states = () | |
for i, (block, layer_past) in enumerate(zip(self.h, past)): | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) | |
outputs = block(hidden_states, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask[i]) | |
hidden_states, present = outputs[:2] | |
presents = presents + (present,) | |
if self.output_attentions: | |
all_attentions.append(outputs[2]) | |
hidden_states = self.ln_f(hidden_states) | |
hidden_states = hidden_states.view(*output_shape) | |
# Add last hidden state | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
outputs = (hidden_states, presents) | |
if self.output_hidden_states: | |
outputs = outputs + (all_hidden_states,) | |
if self.output_attentions: | |
# let the number of heads free (-1) so we can extract attention even after head pruning | |
attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:] | |
all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions) | |
outputs = outputs + (all_attentions,) | |
return outputs # last hidden state, presents, (all hidden_states), (attentions) | |
def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None): | |
""" Build a resized Embedding Module from a provided token Embedding Module. | |
Increasing the size will add newly initialized vectors at the end | |
Reducing the size will remove vectors from the end | |
Args: | |
new_num_tokens: (`optional`) int | |
New number of tokens in the embedding matrix. | |
Increasing the size will add newly initialized vectors at the end | |
Reducing the size will remove vectors from the end | |
If not provided or None: return the provided token Embedding Module. | |
Return: ``torch.nn.Embeddings`` | |
Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None | |
""" | |
if new_num_tokens is None: | |
return old_embeddings | |
old_num_tokens, old_embedding_dim = old_embeddings.weight.size() | |
if old_num_tokens == new_num_tokens: | |
return old_embeddings | |
# Build new embeddings | |
new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim) | |
new_embeddings.to(old_embeddings.weight.device) | |
# initialize all new embeddings (in particular added tokens) | |
self._init_weights(new_embeddings) | |
# Copy word embeddings from the previous weights | |
num_tokens_to_copy = min(old_num_tokens, new_num_tokens) | |
new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] | |
return new_embeddings | |
class GPT2ForLatentConnector_XX(nn.Module): | |
def __init__(self, | |
config, | |
latent_size=32, | |
latent_as_gpt_emb=True, | |
latent_as_gpt_memory=True): | |
super().__init__() | |
self.config = config | |
self.transformer = GPT2Model_XX(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.init_weights() | |
self.tie_weights() | |
self.latent_as_gpt_emb = latent_as_gpt_emb | |
self.latent_as_gpt_memory = latent_as_gpt_memory | |
def init_weights(self): | |
""" Initialize and prunes weights if needed. """ | |
# Initialize weights | |
self.apply(self._init_weights) | |
# Prune heads if needed | |
if self.config.pruned_heads: | |
self.prune_heads(self.config.pruned_heads) | |
def _init_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _tie_or_clone_weights(self, first_module, second_module): | |
""" Tie or clone module weights depending of weither we are using TorchScript or not | |
""" | |
if self.config.torchscript: | |
first_module.weight = nn.Parameter(second_module.weight.clone()) | |
else: | |
first_module.weight = second_module.weight | |
if hasattr(first_module, 'bias') and first_module.bias is not None: | |
first_module.bias.data = torch.nn.functional.pad( | |
first_module.bias.data, | |
(0, first_module.weight.shape[0] - first_module.bias.shape[0]), | |
'constant', 0,) | |
def tie_weights(self): | |
""" Make sure we are sharing the input and output embeddings. | |
Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
""" | |
self._tie_or_clone_weights(self.lm_head, | |
self.transformer.wte) | |
def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
labels=None, label_ignore=None): | |
transformer_outputs = self.transformer(input_ids, | |
past=past, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
latent_as_gpt_emb=self.latent_as_gpt_emb, | |
latent_as_gpt_memory=self.latent_as_gpt_memory) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
outputs = (lm_logits,) + transformer_outputs[1:] | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(ignore_index=label_ignore, reduce=False) # 50258 is the padding id, otherwise -1 is used for masked LM. | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), | |
shift_labels.view(-1)) | |
loss = torch.sum(loss.view(-1, shift_labels.shape[-1]), -1) | |
outputs = (loss,) + outputs | |
return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions) | |
def resize_token_embeddings(self, new_num_tokens=None): | |
model_embeds = self.transformer._resize_token_embeddings(new_num_tokens) | |
if new_num_tokens is None: | |
return model_embeds | |
self.config.vocab_size = new_num_tokens | |
self.transformer.vocab_size = new_num_tokens | |
if hasattr(self, 'tie_weights'): | |
self.tie_weights() | |
return model_embeds | |