Spaces:
Build error
Build error
# coding=utf-8 | |
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for OpenAI GPT.""" | |
from __future__ import (absolute_import, division, print_function, | |
unicode_literals) | |
import sys | |
import json | |
import logging | |
import os | |
import regex as re | |
from io import open | |
try: | |
from functools import lru_cache | |
except ImportError: | |
# Just a dummy decorator to get the checks to run on python2 | |
# because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now. | |
def lru_cache(): | |
return lambda func: func | |
from .tokenization_utils import PreTrainedTokenizer | |
logger = logging.getLogger(__name__) | |
VOCAB_FILES_NAMES = { | |
'vocab_file': 'vocab.json', | |
'merges_file': 'merges.txt', | |
} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
'vocab_file': | |
{ | |
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json", | |
'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-vocab.json", | |
'gpt2-large': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-vocab.json", | |
}, | |
'merges_file': | |
{ | |
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt", | |
'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-merges.txt", | |
'gpt2-large': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-merges.txt", | |
}, | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
'gpt2': 1024, | |
'gpt2-medium': 1024, | |
'gpt2-large': 1024, | |
} | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a mapping to unicode strings. | |
We specifically avoids mapping to whitespace/control characters the bpe code barfs on. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a signficant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
""" | |
_chr = unichr if sys.version_info[0] == 2 else chr | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [_chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
def get_pairs(word): | |
"""Return set of symbol pairs in a word. | |
Word is represented as tuple of symbols (symbols being variable-length strings). | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
class GPT2Tokenizer(PreTrainedTokenizer): | |
""" | |
GPT-2 BPE tokenizer. Peculiarities: | |
- Byte-level Byte-Pair-Encoding | |
- Requires a space to start the input string => will add a space is there isn't. | |
As a consequence, this tokenizer `encode` and `decode` method will not conserve | |
the absence of a space at the beginning of a string: `tokenizer.decode(tokenizer.encode("Hello")) = " Hello" | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
def __init__(self, vocab_file, merges_file, errors='replace', unk_token="<|endoftext|>", | |
bos_token="<|endoftext|>", eos_token="<|endoftext|>", **kwargs): | |
super(GPT2Tokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs) | |
self.max_len_single_sentence = self.max_len # no default special tokens - you can update this value if you add special tokens | |
self.max_len_sentences_pair = self.max_len # no default special tokens - you can update this value if you add special tokens | |
self.encoder = json.load(open(vocab_file, encoding="utf-8")) | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
self.errors = errors # how to handle errors in decoding | |
self.byte_encoder = bytes_to_unicode() | |
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1] | |
bpe_merges = [tuple(merge.split()) for merge in bpe_data] | |
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) | |
self.cache = {} | |
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions | |
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") | |
def vocab_size(self): | |
return len(self.encoder) | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token | |
while True: | |
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
new_word.extend(word[i:j]) | |
i = j | |
except: | |
new_word.extend(word[i:]) | |
break | |
if word[i] == first and i < len(word)-1 and word[i+1] == second: | |
new_word.append(first+second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = ' '.join(word) | |
self.cache[token] = word | |
return word | |
def _tokenize(self, text): | |
""" Tokenize a string. """ | |
text = ' ' + text # GPT-2 (and RoBERTa) tokenizers need at least one space to begin the sentence with. | |
bpe_tokens = [] | |
for token in re.findall(self.pat, text): | |
if sys.version_info[0] == 2: | |
token = ''.join(self.byte_encoder[ord(b)] for b in token) # Maps all our bytes to unicode strings, avoiding controle tokens of the BPE (spaces in our case) | |
else: | |
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding controle tokens of the BPE (spaces in our case) | |
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' ')) | |
return bpe_tokens | |
def _convert_token_to_id(self, token): | |
""" Converts a token (str/unicode) in an id using the vocab. """ | |
return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (string/unicode) using the vocab.""" | |
return self.decoder.get(index) | |
def convert_tokens_to_string(self, tokens): | |
""" Converts a sequence of tokens (string) in a single string. """ | |
text = ''.join(tokens) | |
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) | |
return text | |
def save_vocabulary(self, save_directory): | |
"""Save the tokenizer vocabulary and merge files to a directory.""" | |
if not os.path.isdir(save_directory): | |
logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) | |
return | |
vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file']) | |
merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file']) | |
with open(vocab_file, 'w', encoding='utf-8') as f: | |
f.write(json.dumps(self.encoder, ensure_ascii=False)) | |
index = 0 | |
with open(merge_file, "w", encoding="utf-8") as writer: | |
writer.write(u'#version: 0.2\n') | |
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive." | |
" Please check that the tokenizer is not corrupted!".format(merge_file)) | |
index = token_index | |
writer.write(' '.join(bpe_tokens) + u'\n') | |
index += 1 | |
return vocab_file, merge_file | |
# XX added | |
def add_special_tokens_single_sentence(self, token_ids): | |
return [self.added_tokens_encoder['<BOS>']] + token_ids + [self.added_tokens_encoder['<EOS>']] | |